
(Held On Tuesday 24 ${ }^{\text {th }}$ June, 2022) TIME:3:00 PM to 6:00 PM

Chemistry

Test Pattern : JEE-MAIN
Maximum Marks : 120

Topic Covered: FULL SYLLABUS

Important instruction:

1. Use Blue / Black Ball point pen only.
2. There are three sections of equal weightage in the question paper Physics, Chemistry and Mathematics having 30 questions in each subject. Each paper have 2 sections A and B.
3. You are awarded +4 marks for each correct answer and -1 marks for each incorrect answer.
4. Use of calculator and other electronic devices is not allowed during the exam.
5. No extra sheets will be provided for any kind of work.
```
Name of the Candidate (in Capitals)
```

Father's Name (in Capitals)
Form Number : in figures
: in words
Centre of Examination (in Capitals):
Candidate's Signature: \qquad Invigilator's Signature : \qquad

Rough Space

YOUR TARGET IS TO SECURE GOOD RANK IN JEE-MAIN

FINAL JEE-MAIN EXAMINATION - JUNE, 2022

(Held On Friday 24th June, 2022)
TIME: 3:00 PM to 6: 00 PM

CHEMISTRY

SECTION-A

1. 120 of an organic compound that contains only carbon and hydrogen gives 330 g of CO_{2} and 270 g of water on complete combustion. The percentage of carbon and hydrogen, respectively are.
(A) 25 and 75
(B) 40 and 60
(C) 60 and 40
(D) 75 and 25

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. Given mass of organic compound $=120$
mass of $\mathrm{CO}_{2}(\mathrm{~g})=330 \mathrm{~g}$
mass of $\mathrm{H}_{2} \mathrm{O}(\ell)=270 \mathrm{~g}$
mass of carbon $=\mathrm{n}_{\mathrm{CO}_{2}} \times 12$
$=\frac{330}{44} \times 12=90 \mathrm{~g}$
$\%$ of carbon $=\frac{90}{120} \times 100=75 \%$
mass of hydrogen $=\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}} \times 2$
$=\frac{270}{18} \times 2=30 \mathrm{~g}$
$\%$ of hydrogen $=\frac{30}{120} \times 100=25 \%$
2. The energy of one mole of photons of radiation of wavelength 300 nm is
(Given : $\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}, \mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$, $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$)
(A) $235 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(B) $325 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(C) $399 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(D) $435 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. Energy of one mole of photons $=\frac{h c}{\lambda} \times N_{A}$
$=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{300 \times 10^{-9}} \times 6.02 \times 10^{23}$
$=399.13 \times 10^{3}$ Joule $/$ mole
$=399 \mathrm{~kJ} /$ mole

TEST PAPER WITH SOLUTION

3. The correct order of bound orders of $\mathrm{C}_{2}^{2-}, \mathrm{N}_{2}^{2-}$ and O_{2}^{2-} is, respectively.
(A) $\mathrm{C}_{2}^{2-}<\mathrm{N}_{2}^{2-}<\mathrm{O}_{2}^{2-}$
(B) $\mathrm{O}_{2}^{2-}<\mathrm{N}_{2}^{2-}<\mathrm{C}_{2}^{2-}$
(C) $\mathrm{C}_{2}^{2-}<\mathrm{O}_{2}^{2-}<\mathrm{N}_{2}^{2-}$
(D) $\mathrm{N}_{2}^{2-}<\mathrm{C}_{2}^{2-}<\mathrm{O}_{2}^{2-}$

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. Species
Bond order
C_{2}^{2-}
3
N_{2}^{2-}
2
$\mathrm{O}_{2}^{2-} \quad 1$
4. At $25^{\circ} \mathrm{C}$ and 1 atm pressure, the enthalpies of combustion are as given below:

Substance	H_{2}	C (graphite)	$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
$\frac{\Delta_{\mathrm{C}} \mathrm{H}^{\Theta}}{\mathrm{kJmol}^{-1}}$	-286.0	-394.0	-1560.0

The enthalpy of formation of ethane is
(A) $+54.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(B) $-68.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(C) $-86.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(D) $+97.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $\quad \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\frac{7}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\ell)$
$\Delta_{\mathrm{C}} \mathrm{H}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)=2 \Delta_{\mathrm{f}} \mathrm{H} \mathrm{CO}_{2}(\mathrm{~g})+3 \Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}, \ell\right)$
$-\Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{~g}\right)$
$-1560=2(-394)+3(-286)-\Delta_{f} \mathrm{H}_{(}\left(\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{~g}\right)$
$\Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{~g}\right)=-86 \mathrm{~kJ} /$ mole
5. For a first order reaction, the time required for completion of 90% reaction is ' x ' times the half life of the reaction. The value of ' x ' is
(Given: $\ln 10=2.303$ and $\log 2=0.3010$)
(A) 1.12
(B) 2.43
(C) 3.32
(D) 33.31

Official Ans. by NTA (C)
Allen Ans. (C)

Sol. Given $\mathrm{t}_{0.90}=\mathrm{t}_{0.90}=\mathrm{xt}_{1 / 2}$
First order rate constant
$K=\frac{\ln 2}{t_{1 / 2}}=\frac{1}{x t_{1 / 2}} \ln \frac{A_{0}}{A_{0}-A_{0} \times \frac{90}{100}}$
$\frac{\ln 2}{\mathrm{t}_{1 / 2}}=\frac{\ln 10}{\mathrm{xt}_{1 / 2}}$
$\mathrm{x}=\frac{\ln 10}{\ln 2}=\frac{2.303}{2.303 \times 0.3010}=3.32$
6. Metals generally melt at very high temperature. Amongst the following, the metal with the highest melting point will be
(A) Hg
(B) Ag
(C) Ga
(D) Cs

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. $\mathrm{Hg}, \mathrm{Ga}, \mathrm{Cs}$ are liquid near room temperature But Ag (silver) is solid.
7. Which of the following chemical reactions represents Hall-Heroult Process?
(A) $\mathrm{Cr}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Cr}$
(B) $2 \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 4 \mathrm{Al}+3 \mathrm{CO}_{2}$
(C) $\mathrm{FeO}+\mathrm{CO} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2}$
(D) $2\left[\mathrm{Au}(\mathrm{CN})_{2}\right]_{(\mathrm{aq})}^{-}+\mathrm{Zn}(\mathrm{s}) \rightarrow 2 \mathrm{Au}(\mathrm{s})+\left[\mathrm{Zn}\left(\mathrm{CN}_{4}\right)\right]^{2-}$

Official Ans. by NTA (B)

Allen Ans. (B)

Sol. Hall Heroult process is the major industrial process for extraction of aluminium.
8. In the industrial production of which of the following, molecular hydrogen is obtained as a byproduct?
(A) NaOH
(B) NaCl
(C)Na metal
(D) $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Official Ans. by NTA (A)
Allen Ans. (A)

Sol. Sodium hydroxide is generally prepared commercially by electrolysis of sodium chloride in castner Kellner cell.
at cathode : $\mathrm{Na}+\mathrm{e}^{-} \xrightarrow{\mathrm{Hg}} \mathrm{Na}-$ amalgum

$$
\text { Anode }: \mathrm{Cl}^{-} \longrightarrow \frac{1}{2} \mathrm{Cl}_{2}+\mathrm{e}^{-}
$$

The Na -amalgam is treated with water to give sodium hydroxide and hydrogen gas :

2 Na (amalgam) $+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}+2 \mathrm{Hg}$
9. Which one of the following compounds is used as a chemical in certain type of fire extinguishers?
(A) Baking Soda
(B) Soda ash
(C) Washing Soda
(D) Caustic Soda

Official Ans. by NTA (A)
Allen Ans. (A)
Sol. Sodium hydrogencarbonate (Baking soda), NaHCO_{3} is used in the fire extinguishers.
10. PCl_{5} is well known. but NCl_{5} is not. Because.
(A) nitrogen is less reactive than phosphorous.
(B) nitrogen doesn't have d-orbitals in its valence shell.
(C) catenation tendency is weaker in nitrogen than phosphorous.
(D) size of phosphorous is larger than nitrogen.

Official Ans. by NTA (B)

Allen Ans. (B)

Sol. PCl_{5} forms five bonds by using the d -orbitals to "expand the octet". But NCl_{5} does not exist because there are no d -orbitals in the valence shell ($2^{\text {nd }}$ shell). Therefore there is no way to expand the octet.
11. Transition metal complex with highest value of crystal field splitting $\left(\Delta_{0}\right)$ will be
(A) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(B) $\left[\mathrm{Mo}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(C) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(D) $\left[\mathrm{Os}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Official Ans. by NTA (D)

Allen Ans. (D)

Sol. CFSE of octahedral complexes with water is greater for 5 d series metal centre ion as compared to 3 d and 4 d series metal centre.
12. Some gases are responsible for heating of atmosphere (green house effect). Identify from the following the gaseous species which does not cause it.
(A) CH_{4}
(B) O_{3}
(C) $\mathrm{H}_{2} \mathrm{O}$
(D) N_{2}

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. $\mathrm{CH}_{4}, \mathrm{O}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ causes global warming in Tropospheric level.
N_{2} does not cause global warming.
13. Arrange the following carbocations in decreasing order of stability.

A

B

C
(A) A $>$ C $>$ B
(B) A $>$ B $>$ C
(C) C $>$ B $>$ A
(D) C $>$ A $>$ B

Official Ans. by NTA (A)
Allen Ans. (Bonus)

Sol. Carbocation is stabilised by resonance with lone pairs on oxygen atom and +H effect of $2 \underline{\underline{a}}$
hydrogens

B $>\mathrm{A}>\mathrm{C}$
14. Given below are two statements.

Statement I : The presence of weaker π - bonds make alkenes less stable than alkanes.

Statement II : The strength of the double bond is greater than that of carbon-carbon single bond.
In the light of the above statements, choose the correct answer from the options given below.
(A) Both Statement I and Statement II are correct.
(B) Both Statement I and Statement II are incorrect.
(C) Statement I is correct but Statement II is incorrect.
(D) Statement I is incorrect but Statement II is correct.

Official Ans. by NTA (A)
Allen Ans. (A)
15. Which of the following reagents/ reactions will convert ' A ' to ' B '?

(A) PCC oxidation
(B) Ozonolysis
(C) $\mathrm{BH}_{3}, \mathrm{H}_{2} \mathrm{O}_{2} /{ }^{-} \mathrm{OH}$ followed by PCC oxidation
(D) HBr , hydrolysis followed by oxidation by $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.

Official Ans. by NTA (C)
Allen Ans. (C)

D \| G \| T A L

Sol. $\mathrm{BH}_{3}, \mathrm{H}_{2} \mathrm{O}_{2} /-\mathrm{OH}$ followed by PCC oxidation.

16. Hex-4-ene-2-ol on treatment with PCC gives ' A '. ' A ' on reaction with sodium hypoiodite gives ' B ', which on further heating with soda lime gives ' C '. The compound ' C ' is
(A) 2-pentene
(B) proponaldehyde
(C) 2-butene
(D) 4-methylpent-2-ene

Official Ans. by NTA (C)
Allen Ans. (C)

Sol.

19. The structure shown below is of which well-known drug molecule?

(A) Ranitidine
(B) Seldane
(C) Cimetidine
(D) Codeine

Official Ans. by NTA (C)
Allen Ans. (C)
20. In the flame test of a mixture of salts, a green flame with blue centre was observed. Which one of the following cations may be present?
(A) Cu^{2+}
(B) Sr^{2+}
(C) Ba^{2+}
(D) Ca^{2+}

Official Ans. by NTA (A)
Allen Ans. (A)
Sol.

18. Which of the following is not an example of a condensation polymer?
(A) Nylon 6,6
(B) Decron
(C) Buna-N
(D) Silicone

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. Buna-N is an addition copolymer of 1,3-butadiene and acrylonitrile.

(B)

$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
(C)

But-2-ene
17. The conversion of propan-1-ol to n-butylamine involves the sequential addition of reagents. The correct sequential order of reagents is.
(A)(i) SOCl_{2} (ii) KCN (iii) $\mathrm{H}_{2} / \mathrm{Ni}, \mathrm{Na}(\mathrm{Hg}) / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(B) (i) HCl (ii) $\mathrm{H}_{2} / \mathrm{Ni}, \mathrm{Na}(\mathrm{Hg}) / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(C) (i) SOCl_{2} (ii) KCN (iii) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(D) (i) HCl (ii) $\mathrm{CH}_{3} \mathrm{NH}_{2}$

Official Ans. by NTA (A)

Sol. Ion
(A) Cu^{+2}
(B) Sr^{2+}
(C) Ba^{2+}

Colour of the flame
green flame with blue centre
Crimson Red
Apple green

SECTION-B

1. At 300 K , a sample of 3.0 g of gas A occupies the same volume as 0.2 g of hydrogen at 200 K at the same pressure. The molar mass of gas A is \qquad g mol^{-1} (nearest integer) Assume that the behaviour of gases as ideal. (Given: The molar mass of hydrogen $\left(\mathrm{H}_{2}\right)$ gas is $\left.2.0 \mathrm{~g} \mathrm{~mol}^{-1}\right)$
Official Ans. by NTA (45)
Allen Ans. (45)
Sol. Given : Ideal gas A and H_{2} gas at same pressure and volume.

From ideal gas equation $\mathrm{pv}=\mathrm{nRT}$
$\mathrm{n}_{1} \mathrm{~T}_{1}=\mathrm{n}_{2} \mathrm{~T}_{2}$
$\frac{3}{\text { GMM of A }} \times 300=\frac{0.2}{2} \times 200$

GMM of $\mathrm{A}=45 \mathrm{~g} /$ mole
2. A company dissolves ' X ' amount of CO_{2} at 298 K in 1 litre of water to prepare soda water
$\mathrm{X}=$ \qquad $\times 10^{-3} \mathrm{~g}$. (nearest integer)
(Given: partial pressure of CO_{2} at $298 \mathrm{~K}=0.835$ bar.

Henry's law constant for CO_{2} at $298 \mathrm{~K}=1.67 \mathrm{kbar}$.
Atomic mass of H, C and O is 1,12 and $6 \mathrm{~g} \mathrm{~mol}^{-1}$, respectively)

Official Ans. by NTA (1221)
Allen Ans. (1222 \& 1223)
Sol. From Henry law
$\mathrm{P}=\mathrm{K}_{\mathrm{H}} \mathrm{X}_{\mathrm{CO}_{2}}$
$0.835=1.67 \times 10^{3} \times 1.67 \times 10^{3} \times \frac{\mathrm{w}_{\mathrm{CO}_{2}} / 44}{\frac{\mathrm{w}_{\mathrm{CO}_{2}}}{44}+\frac{1000}{18}}$
$\mathrm{w}_{\mathrm{CO}_{2}}=1.2228 \mathrm{~g}=1222.8 \times 10^{-3} \mathrm{~g}$
Or
$\mathrm{P}=\mathrm{K}_{\mathrm{H}} \mathrm{X}_{\mathrm{CO}_{2}}$
$0.835=1.67 \times 10^{3} \times \frac{\mathrm{n}_{\mathrm{CO}_{2}}}{\mathrm{n}_{\mathrm{CO}_{2}}+\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}}$
$0.835=1.67 \times 10^{3} \times \frac{\mathrm{w}_{\mathrm{CO}_{2}} / 44}{\frac{1000}{18}}$
$\mathrm{w}_{\mathrm{CO}_{2}}=1.2222 \mathrm{~g}=1222.2 \times 10^{-3} \mathrm{~g}$
3. PCl_{5} dissociates as
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
5 moles of PCl_{5} are placed in a 200 litre vessel which contains 2 moles of N_{2} and is maintained at 600 K . The equilibrium pressure is 2.46 atm . The equilibrium constant K_{p} for the dissociation of PCl_{5} is \qquad $\times 10^{-3}$. (nearest integer)
(Given: $\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm}^{-1} \mathrm{~mol}^{-1}$: Assume ideal gas behaviour)

Official Ans. by NTA (1107)
Allen Ans. (1107)
Sol. Given : 2 mole of N_{2} gas was present as inert gas.
Equilibrium pressure $=2.46 \mathrm{~atm}$
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{C} \ell_{2}(\mathrm{~g})$

$\mathrm{t}=0$	5	0	0
$\mathrm{t}=E q^{\mathrm{m}}$	$5-\mathrm{x}$	x	x

from ideal gas equation
$\mathrm{PV}=\mathrm{nRT}$
$2.46 \times 200=(5-x+x+x+2) \times 0.082 \times 600$
$\mathrm{x}=3$
$\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{n}_{\mathrm{PCl}_{3}} \times \mathrm{n}_{\mathrm{Cl}_{2}}}{\mathrm{n}_{\mathrm{PCl}_{5}}} \times\left[\frac{\mathrm{P}_{\text {total }}}{\mathrm{n}_{\text {total }}}\right]$
$\frac{3 \times 3}{2} \times \frac{2.46}{10}=1.107=1107 \times 10^{-3}$
4. The resistance of conductivity cell containing 0.01 M KCl solution at 298 K is 1750Ω. If the conductively of 0.01 M KCl solution at 298 K is $0.152 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$, then the cell constant of the conductivity cell is \qquad $\times 10^{-3} \mathrm{~cm}^{-1}$.

Official Ans. by NTA (266)
Allen Ans. (266)

Sol. $\mathrm{K}=\frac{1}{\mathrm{R}} \times$ cell constant
$0.152 \times 10^{-3}=\frac{1}{1750}$ cell constant
cell constant $=266 \times 10^{-3}$
5. When 200 mL of 0.2 M acetic acid is shaken with 0.6 g of wood charcoal, the final concentration of acetic after adsorption is 0.1 M . The mass of acetic acid adsorbed per garm of carbon is \qquad g .

Official Ans. by NTA (2)
Allen Ans. (2)
Sol. weight of wood charcoal $=0.6 \mathrm{~g}$
Mass of acetic acid adsorbed $=\frac{M_{1} V_{1}-M_{2} V_{2}}{1000} \times 60$
$=\frac{0.2 \times 200-0.1 \times 200}{1000} \times 60$
$=1.2 \mathrm{~g}$
Mass of acetic acid adsorbed per gram of carbon $=\frac{1.2}{0.6}=2$
6. (a) Baryte, (b) Galena, (c) Zinc blende and
(d) Copper pyrites. How many of these minerals are sulphide based?

Official Ans. by NTA (3)
Allen Ans. (3)
Sol.
(1) Baryte : BaSO_{4}
(2) Galena : PbS
(3) Zinc blende : ZnS
(4) Copper pyrite : CuFeS_{2}
sulphide $\left(\mathrm{S}^{2-}\right)$ ores
7. Manganese (VI) has ability to disproportionate in acidic solution. The difference in oxidation states of two ions it forms in acidic solution is \qquad
Official Ans. by NTA (3)
Allen Ans. (3)
Sol. MnO_{4}^{2-} disproportionates in a neutral or acidic solution to give MnO_{4}^{-}and Mn^{+4}
$3 \mathrm{MnO}_{4}^{2-}+3 \mathrm{H}^{+} \longrightarrow 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
O.S. of Mn in $\mathrm{MnO}_{4}^{-}=+7$
O.S. of Mn in $\mathrm{MnO}_{2}=+4$

$$
\text { difference }=3
$$

8. $\quad 0.2 \mathrm{~g}$ of an organic compound was subjected to estimation of nitrogen by Dumas method in which volume of N_{2} evolved (at STP) was found to be 22.400 mL . The percentage of nitrogen in the compound is \qquad [nearest integer]
(Given: Molar mass of N_{2} is $28 \mathrm{~mol}^{-1}$. Molar volume of N_{2} at STP : 22.4 L)

Official Ans. by NTA (14)
Allen Ans. (14)
Sol. weight of organic compound $=0.2 \mathrm{~g}$
mass of $\mathrm{N}_{2}(\mathrm{~g})$ evolved $=\frac{22.4 \times 10^{-3}}{22.4} \times 28$
$=28 \times 10^{-3} \mathrm{~g}$
$\%$ of $\mathrm{N}=\frac{28 \times 10^{-3}}{0.2} \times 100=14$

Consider the above reaction. The number of π electrons present in the product ' P ' is \qquad .
Official Ans. by NTA (2)
Allen Ans. (2)
Sol. Number of π electron $=2$

10. In alanylglycylleucylalanylvaline, the number of peptide linkages is \qquad .
Official Ans. by NTA (4)
Allen Ans. (4)
Sol. There are Five amino acids and four peptide linkages.

