

## JEE-MAIN – JUNE, 2022

(Held On Tuesday 26<sup>th</sup> June, 2022)

TIME: 3:00 PM to 6:00 PM

# **Chemistry**

Test Pattern : JEE-MAIN Maximum Marks : 120

**Topic Covered: FULL SYLLABUS** 

### Important instruction:

- 1. Use Blue / Black Ball point pen only.
- 2. There are three sections of equal weightage in the question paper **Physics, Chemistry** and **Mathematics** having 30 questions in each subject. Each paper have 2 sections A and B.
- 3. You are awarded +4 marks for each correct answer and -1 marks for each incorrect answer.
- 4. Use of calculator and other electronic devices is not allowed during the exam.
- 5. No extra sheets will be provided for any kind of work.

| Name of the Candidate (in Capitals)  |                           |
|--------------------------------------|---------------------------|
| Father's Name (in Capitals)          |                           |
| Form Number : in figures             |                           |
| : in words                           |                           |
| Centre of Examination (in Capitals): |                           |
| Candidate's Signature:               | Invigilator's Signature : |

Rough Space

## YOUR TARGET IS TO SECURE GOOD RANK IN JEE-MAIN

Corporate Office : **ALLEN Digital Pvt. Ltd.,** "One Biz Square", A-12 (a), Road No. 1, Indraprastha Industrial Area, Kota (Rajasthan) INDIA-324005



### **FINAL JEE-MAIN EXAMINATION - JUNE, 2022**

(Held On Sunday 26th June, 2022)

TIME: 3:00 PM to 6:00 PM

#### **CHEMISTRY**

#### **SECTION-A**

- 1. The number of radial and angular nodes in 4d orbital are. respectively
  - (A) 1 and 2
- (B) 3 and 2
- (C) 1 and 0
- (D) 2 and 1

### Official Ans. by NTA (A)

Allen Ans. (A)

**Sol.** Radial node = n - l - 1

$$=4-2-1$$

= 1

Angular node (l) = 2

2. Match List I with List II.

| List I       | List II                     |
|--------------|-----------------------------|
| Enzyme       | Conversion of               |
| A. Invertase | I. Starch into maltose      |
| B. Zymase    | II. Maltose into glucose    |
| C. Diastase  | III. Glucose into ethanol   |
| D. Maltase   | IV. Cane sugar into glucose |

Choose the most appropriate answer from the options given below:

- (A) A-III, B-IV. C-II. D-I
- (B) A-III. B-II. C-I. D-IV
- (C) A-IV, B-IIL C-I. D-II
- (D) A-IV, B-II. C-III. D-I

Official Ans. by NTA (C)

Allen Ans. (C)

**Sol.** Invertase: Cane sugar  $\rightarrow$  Glucose and fructose

Zymase : Glucose  $\rightarrow$  Ethanol and CO<sub>2</sub>

Diastase : Starch → Maltose
Maltase : Maltose → Glucose

**3.** Which of the following elements in considered as a

metalloid?

- (A) Sc
- (B) Pb
- (C) Bi
- (D) Te

Official Ans. by NTA (D)

Allen Ans. (D)

**Sol.** Sc, Pb, Bi are metals

Te is a metalloid

## TEST PAPER WITH SOLUTION

- 4. The role of depressants in Froth Flotation method\* is to
  - (A) selectively prevent one component of the ore from coming to the froth.
  - (B) reduce the consumption of oil for froth formation.
  - (C) stabilize the froth.
  - (D) enhance non-wettability of the mineral particles.

Official Ans. by NTA (A)

Allen Ans. (A)

**Sol.** Depressant prevent one component from coming to the froth.

For eg., in Galena ore, the depressant (NaCN) prevents impurity (ZnS) from coming to the froth.

- 5. Boiling of hard water is helpful in removing the temporary hardness by converting calcium hydrogen carbonate and magnesium hydrogen carbonate to
  - (A) CaCO<sub>3</sub> and Mg(OH)<sub>2</sub>
  - (B) CaCO<sub>3</sub> and M<sub>2</sub>CO<sub>3</sub>
  - (C) Ca(OH)<sub>2</sub> and MgCO<sub>3</sub>
  - (D) Ca(OH)<sub>2</sub> and Mg(OH)<sub>2</sub>

Official Ans. by NTA (A)

Allen Ans. (A)

**Sol.**  $Mg(HCO_3)_2 \xrightarrow{Boil} Mg(OH)_2 + 2CO_2 \uparrow$ 

 $Ca(HCO_3)_2 \xrightarrow{\quad Boil \quad} CaCO_3 + H_2O + CO_2 \uparrow$ 

- **6.** s-block element which cannot be qualitatively confirmed by the flame test is
  - (A) Li
- (B) Na
  - ì

(C) Rb

(D) Be

Official Ans. by NTA (D)

Allen Ans. (D)

Sol. Flame color

Li Crimson Red

Na Yellow

Rb Red violet

Be No color

### JEE-MAIN 2022 (CHEMISTRY)



7. The oxide which contains an odd electron at the nitrogen atom is

 $(A) N_2O$ 

- (B) NO<sub>2</sub>
- (C) N<sub>2</sub>O<sub>3</sub>
- (D)  $N_2O_5$

Official Ans. by NTA (B)

Allen Ans. (B)

Sol.

$$N \equiv N \to O \qquad N \longrightarrow O \qquad N - N \longrightarrow O$$



- **8.** Which one of the following is an example of disproportionation reaction?
  - (A)  $3\text{MnO}_4^{2-} + 4\text{H}^+ \rightarrow 2\text{MnO}_4^- + \text{MnO}_2 + 2\text{H}_2\text{O}$
  - (B)  $MnO_4^{2-} + 4H^+ + 4e^- \rightarrow MnO_2 + 2H_2O$
  - (C)  $10I^{-} + 2MnO_{4}^{-} + 16H^{+} \rightarrow 2Mn^{2+} + 8H_{2}O + 5I_{2}$
  - (D)  $8MnO_4^- + 3S_2O_3^{2-} + H_2O \rightarrow 8MnO_2 + 6SO_4^{2-} + 2OH^-$

Official Ans. by NTA (A)

Allen Ans. (A)

- 9. The most common oxidation state of Lanthanoid elements is +3. Which of the following is likely to deviate easily from +3 oxidation state?
  - (A) Ce (At. No. 58)
- (B) La (At. No. 57)
- (C) Lu (At. No. 71)
- (D) Gd (At. No. 64)

Official Ans. by NTA (A)

Allen Ans. (A)

**Sol.** Ce = [Xe]  $4f^1 5d^1 6s^2$ 

 $Ce^{3+} = [Xe] 4f^1 5d^0$ 

 $Ce^{+4} = [Xe] 4f^0 5d^0$  (Noble gas configuration)

**10.** The measured BOD values for four different water samples (A-D) are as follows:

A = 3 ppm: B=18 ppm: C-21 ppm: D=4 ppm. The water samples which can be called as highly polluted with organic wastes, are

- (A) A and B
- (B) A and D
- (C) B and C
- (D) B and D

Official Ans. by NTA (C)

Allen Ans. (C)

**Sol.** Clean water  $\longrightarrow$  B.O.D.  $\leq$  5 ppm

Highly polluted water  $\longrightarrow$  B.O.D. > 17 ppm

11. The correct order of nucleophilicity is

- (A)  $F^- > OH^-$
- (B)  $H_2 \ddot{O} > OH^{-1}$
- (C)  $\ddot{ROH} > RO^-$
- (D)  $NH_{2}^{-} > NH$ ,

Official Ans. by NTA (D)

Allen Ans. (D)

**Sol.** Nucleophilicity  $\infty$  electro density on donor atom

 $\infty$  size of donor atom (in gas)

$$\propto \frac{1}{\text{EN of atom}}$$
 (for period)

- **12.** Oxidation of toluene to Benzaldehyde can be easily carried out with which of the following reagents?
  - (A) CrO<sub>3</sub>/acetic acid, H<sub>3</sub>O<sup>+</sup>
  - (B) CrO<sub>3</sub>/acetic anhydride, H<sub>3</sub>O<sup>+</sup>
  - (C) KMnO<sub>4</sub>/HCl, H<sub>3</sub>O<sup>+</sup>
  - (D) CO/HCl, anhydrous AlCl<sub>3</sub>

Official Ans. by NTA (B) Allen Ans. (B)

Sol.

$$\begin{array}{c|c} O \\ \\ \\ CH_3 \\ \\ CO/Acetic \ an \ hydride \\ \end{array} \begin{array}{c} O - C - CH_3 \\ \\ O - C - CH_3 \\ \\ \\ O \\ \end{array} \begin{array}{c} CHO \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ + 2 \ CH_3 COOF \\ \end{array}$$

13. The major product in the following reaction



Official Ans. by NTA (A)

Allen Ans. (A)

### Final JEE-Main Exam June, 2022/26-06-2022/ Evening Session



Sol. 
$$(1) \operatorname{Hg} (\operatorname{OAc})_{x} \operatorname{H}_{x} O \longrightarrow H$$

 $\begin{aligned} & Oxymercuration - Demercuration \\ & Addition \ of \ H_2O \end{aligned}$ 

Markovnikov's addition without rearrangement

**14.** Halogenation of which one of the following will yield m-substituted product with respect to methyl group as a major product?

$$(A) \qquad (B) \qquad (CH_3) \qquad (CH_3)$$

Official Ans. by NTA (C)

Allen Ans. (C)

**Sol.** Electrophile will attack at ortho and para position with respect to better electron releasing group (ERG)

$$ERG: -OH > -CH_3$$

$$CH_3$$

$$OH$$

Para position with respect to - OH (+R) group and it will be meta position with respect to - CH<sub>3</sub> group.

**15.** The reagent, from the following, which converts benzoic acid to benzaldehyde in one step is

$$\longrightarrow \bigcirc$$

(A) LiAlH<sub>4</sub>

(B) KMnO<sub>4</sub>

(C) MnO

(D) NaBH<sub>4</sub>

Official Ans. by NTA (C)

Allen Ans. (D)

Sol.

$$C_{6}H_{5} - \underbrace{C - OH + HO}_{C} - C_{6}H_{5} \xrightarrow{MnO}_{\Delta} C_{6}H_{5} - C_{6}H_{5} + CO_{2} + H_{2}O$$

$$C_{6}H_{5} - \underbrace{C - OH + HO}_{C} - C_{7}H_{5} \xrightarrow{MnO}_{\Delta} C_{6}H_{5} - C_{7}H_{7} + CO_{2} + H_{2}O$$

**16.** The final product 'A' in the following reaction sequence

$$CH_{3} CH_{2} - C - CH_{3} \xrightarrow{HCN}? \xrightarrow{95\% H_{2}SO_{4}} A$$

$$CH_{3} - CH = C - COOH$$

$$(A) CH_{3} - CH = C - COOH$$

$$(B) CH_{3} - CH = C - CN$$

$$CH_{3}$$

Official Ans. by NTA (A)

Allen Ans. (A)

Sol.

$$CH_{3}CH_{2} - C - CH_{3} \xrightarrow{HCN} CH_{3}CH_{2} - C - CH_{3} \xrightarrow{95\% H_{3}SO_{4}} CH_{3}CH_{2} - C - CH_{3} \xrightarrow{Heat} CH_{3}CH_{2} - C - CH_{3} \xrightarrow{Heat} CH_{3}CH_{2} - C - CH_{3} \xrightarrow{Heat} CH_{3}CH_{3} - CH_{3}CH_{3}CH_{3} - CH_{3}CH_{3}CH_{3} - CH_{3}CH_{3}CH_{3} - CH_{3}CH_{3}CH_{3}CH_{3} - CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}C$$

- **17.** Which statement is NOT correct for p-toluenesulphonyl chloride?
  - (A) It is known as Hinsberg's reagent.
  - (B) It is used to distinguish primary and secondary
  - (C) On treatment with secondary amine, it leads to a product, that is soluble in alkali.
  - (D) It doesn't react with tertiary amines.

Official Ans. by NTA (C) Allen Ans. (C)

Sol.

Hinsberg's reagent

### JEE-MAIN 2022 (CHEMISTRY)



$$H_3C$$
  $\longrightarrow$   $S$   $Cl+$  1° Amine  $\longrightarrow$  Soluble in alkali

**18.** The final product 'C' is the following series series of reactions

of reactions
$$NO_{2} \longrightarrow NO_{2} \longrightarrow NO_{2}$$

Official Ans. by NTA (C)

Allen Ans. (D)

Sol. 
$$NO_2$$
  $NH_2$   $N_2Cl$   $NaNO_2$   $N$ 

**19.** Which of the following is NOT an example of synthetic detergent?

$$(A)$$
  $CH_3 - (CH_2)_{11}$   $SO_3^-Na^+$ 

(B)  $CH_3 - (CH_2)_{16} - COO^- Na^+$ 

$$\begin{array}{c}
CH_{3} \\
CH_{3} - (CH_{2})_{15} - N - CH_{3} \\
CH_{3}
\end{array}$$

$$\begin{array}{c}
CH_{3} \\
CH_{3}
\end{array}$$

$$\begin{array}{c}
CH_{3} \\
CH_{3}
\end{array}$$

(D) CH<sub>3</sub>(CH<sub>2</sub>)<sub>16</sub>COO(CH<sub>2</sub>CH<sub>2</sub>O)<sub>n</sub>CH<sub>2</sub>CH<sub>2</sub>OH

Official Ans. by NTA (B)

Allen Ans. (B)

Sol. Refer NCERT (Page No. 452)

**20.** Which one of the following is a water soluble vitamin, that is not excreted easily?

(A) Vitamin B<sub>2</sub>

(B) Vitamin B<sub>1</sub>

(C) Vitamin B<sub>6</sub>

(D) Vitamin B<sub>12</sub>

Official Ans. by NTA (D)

Allen Ans. (D)

Sol. Refer NCERT (Page No. 426)

#### **SECTION-B**

1. CNG is an important transportation fuel. When 100 g CNG is mixed with 208 oxygen in vehicles, it leads to the formation of CO<sub>2</sub> and H<sub>2</sub>O and produces large quantity of heat during this combustion, then the amount of carbon dioxide, produced in grams is \_\_\_\_\_\_. [nearest integer]

[Assume CNG to be methane]

Official Ans. by NTA (143)

Allen Ans. (143)

Sol. 
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

$$\frac{100}{16} \frac{208}{32}$$

$$= 6.25 = 6.5$$

$$\frac{\text{Mole}}{\text{Stoi. Coeff.}} \frac{6.25}{1} \frac{6.5}{2} = 3.25$$
So O is limiting respect

So, O2 is limiting reagent

Mole – Mole analysis

### Final JEE-Main Exam June, 2022/26-06-2022/ Evening Session



$$\frac{n_{O_2}}{2} = \frac{n_{co_2}}{1}$$

$$\frac{6.5}{2} = n_{co_2}$$

Mass of 
$$CO_2 = \frac{6.5}{2} \times 44 = 143 \text{ gm}$$

2. In a solid AB. A atoms are in ccp arrangement and B atoms occupy all the octahedral sites. If two atoms from the opposite faces are removed, then the resultant stoichiometry of the compound is A<sub>x</sub>B<sub>y</sub>. The value of x is\_\_\_\_\_\_. [nearest integer]

#### Official Ans. by NTA (3)

Allen Ans. (3)

**Sol.** 
$$A \to 4 - \left(2 \times \frac{1}{2}\right) = 3$$

$$\mathbf{B} \to 12 \times \frac{1}{4} + 1 \times 1 = 4$$

So, Compound is A<sub>3</sub>B<sub>4</sub>

The value of x is 3.

**3.** Amongst SF<sub>4</sub>, XeF<sub>4</sub>, CF<sub>4</sub> and H<sub>2</sub>O, the number of species with two lone pairs of electrons .

#### Official Ans. by NTA (3)

#### Allen Ans. (1)

Sol.



Total lone pairs = 13

Total lone pairs = 14

Total lone pairs = 12

4. A fish swimming in water body when taken out from the water body is covered with a film of water of weight 36 g. When it is subjected to cooking at 100°C, then the internal energy for vaporization in kJ mol<sup>-1</sup> is \_\_\_\_\_.

[nearest integer]

[Assume steam to be an ideal gas. Given  $A_{vap}H^{!}$  for water at 373 K and 1 bar is 41.1 kJ  $mol^{-1}$  ;  $R=8.31\ JK^{-1}mol^{-1}]$ 

### Official Ans. by NTA (38)

Allen Ans. (38)

**Sol.**  $H_2O(l) \rightarrow H_2O(g)$ 

$$n = \frac{36}{18} = 2 \text{ mol}$$

$$\Delta U = \ \Delta H - \Delta n_{\rm g} \ RT$$

$$= 41.1 - \frac{1 \times 8.31 \times 373}{1000} \, kJ \, / \, mol$$

= 38 kJ/mol

5. The osmotic pressure exerted by a solution prepared by dissolving 2.0 g of protein of molar mass 60 kg mol<sup>-1</sup> in 200 mL of water at 27°C is Pa. [integer value]

(use  $R = 0.083 \text{ L bar mol}^{-1} \text{ K}^{-1}$ )

### Official Ans. by NTA (415)

Allen Ans. (415)

**Sol.** 
$$\pi = iCRT$$

$$=\frac{1\times2}{60000\times0.2}\times0.083\times300$$

$$= 0.00415 \text{ bar}$$
 (: 1 bar =  $10^5 \text{ Pa}$ )

So, 
$$0.00415 \times 10^5 \text{ Pa} = 415 \text{ Pa}$$

6.  $40^{\circ}$  of HI undergoes decomposition to H<sub>2</sub> and I<sub>2</sub> at 300 K.  $\Delta G^{!}$  for this decomposition reaction at one atmosphere pressure is \_\_\_\_\_ J mol<sup>-1</sup>. [nearest integer]

(Use R =  $8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ ; log 2 = 0.3010. In 10 = 2.3, log 3 = 0.477)

### Official Ans. by NTA (2735)

Allen Ans. (2735)

**Sol.** HI 
$$\Longrightarrow \frac{1}{2} H_2 + \frac{1}{2} I_2$$

t. 1

teq 
$$1 - 0.4$$
  $\frac{0.4}{2}$   $\frac{0.4}{2}$ 

$$K_{p} = \frac{(0.2)^{\frac{1}{2}}(0.2)^{\frac{1}{2}}}{1 - 0.4} = \frac{0.2}{0.6} = \frac{1}{3}$$

### JEE-MAIN 2022 (CHEMISTRY)



$$\Delta G = \Delta G^{\circ} + RT \ln K = 0$$

$$\Delta G^{\circ} = -RT \ln K \Rightarrow -8.31 \times 300 \times 2.3 \times \log \left(\frac{1}{3}\right)$$
$$= 2735 \text{ J/mol}$$

7.  $Cu(s) + Sn^{2+}(0.001M) \rightarrow Cu^{2+}(0.01M) + Sn(s)$ The Gibbs free energy change for the above reaction at 298 K is  $x \times 10^{-1}$  kJ mol<sup>-1</sup>;

The value of x is . [nearest integer]

Given: 
$$E_{Cu^{2+}/Cu}^{\square} = 0.34V; E_{Sn^{2+}/Sn}^{\square} = -0.14V; F = 96500C \text{ mol}^{-1}$$

### Official Ans. by NTA (983)

Allen Ans. (983)

$$\begin{split} \textbf{Sol.} \quad & Cu_{(s)} + Sn^{2+} \left(0.001 \; M\right) \rightarrow Cu^{2+} \left(0.01 \; M\right) + Sn_{(s)} \\ & E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode} \\ & = -0.14 - (0.34) \\ & = -0.48 \; V \\ & E_{cell} = E^{\circ}_{cell} - \frac{0.059}{2} log \frac{\left[Cu^{2+}\right]}{\left[Sn^{2+}\right]} \end{split}$$

$$E_{cell} = E_{cell}^{\circ} - \frac{0.059}{2} log \frac{[Cu]}{[Sn^{2+}]}$$
$$= -0.48 - \frac{0.059}{2} log \frac{0.01}{0.001}$$
$$= -0.509$$

$$\Delta G = - nF E_{cell}$$
  
= -2 × 96500 × (-0.5095)

$$= 98.335 \text{ kJ/mol}$$

$$= 983.35 \times 10^{-1} \text{ kJ/mol}$$

Nearest Integer: 983

**8.** Catalyst A reduces the activation energy for a reaction by 10 kJ mol<sup>-1</sup> at 300 K. The ratio of rate

constants, 
$$\frac{{}^{k}T$$
, Catalysed}{{}^{k}T, Uncatalysed is  $e^{x}$ . The value of x is \_\_\_\_\_. [nearest integer]

[Assume theat the pre-exponential factor is same in both the cases.

Given 
$$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$$

#### Official Ans. by NTA (4)

Allen Ans. (4)

Sol.

$$\begin{split} K &= Ae^{\frac{-Ea}{RT}} \\ K_{cat} &= Ae^{\frac{-E_a^1}{RT}}, \qquad K_{uncat.} &= Ae^{\frac{-Ea}{RT}} \\ \frac{K_{cat}}{K_{uncat.}} &= e^{\frac{E_a - E_a^1}{RT}} &= e^{\frac{10 \times 1000}{8.31 \times 300}} = e^{4.009} = e^x \\ \therefore \quad x &= 4 \end{split}$$

9. Reaction of  $[Co(H_2O)_6]^{2^+}$  with excess ammonia and in the presence of oxygen results into a diamagnetic product. Number of electrons present in  $t_{2g}$ -orbitals of the product is \_\_\_\_\_\_.

#### Official Ans. by NTA (6)

Allen Ans. (6)

**Sol.**  $[Co(H_2O)_6]^{2+}$  +NH<sub>3</sub>(excess)  $\rightarrow$   $[Co(NH_3)_6]^{3+}$  + 6H<sub>2</sub>O

Low spin complex

$$\text{Co}^{3+} \Rightarrow 3\text{d}^6 4\text{s}^0$$
  
 $\Rightarrow t_{2g}^6 e_g^0$ 

Total number electrons = 6

10. The moles of methane required to produce 81 g of water after complete combustion is \_\_\_\_\_ × 10<sup>-2</sup> mol. [nearest integer]

### Official Ans. by NTA (225)

**Allen Ans. (225)** 

Sol. 
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

POAC on H atom

$$n_{CH4} \times 4 = n_{H2O} \times 2$$

$$n_{CH_4} = \frac{81}{18} \times 2 \times \frac{1}{4} = \frac{81}{36}$$

$$n_{CH_4} = 2.25$$

$$= 225 \times 10^{-2}$$

Nearest Integers = 225