

# JEE-MAIN – JUNE, 2022

(Held On Tuesday 27<sup>th</sup> June, 2022)

TIME: 3:00 PM to 6:00 PM

# Chemistry

Test Pattern : JEE-MAIN

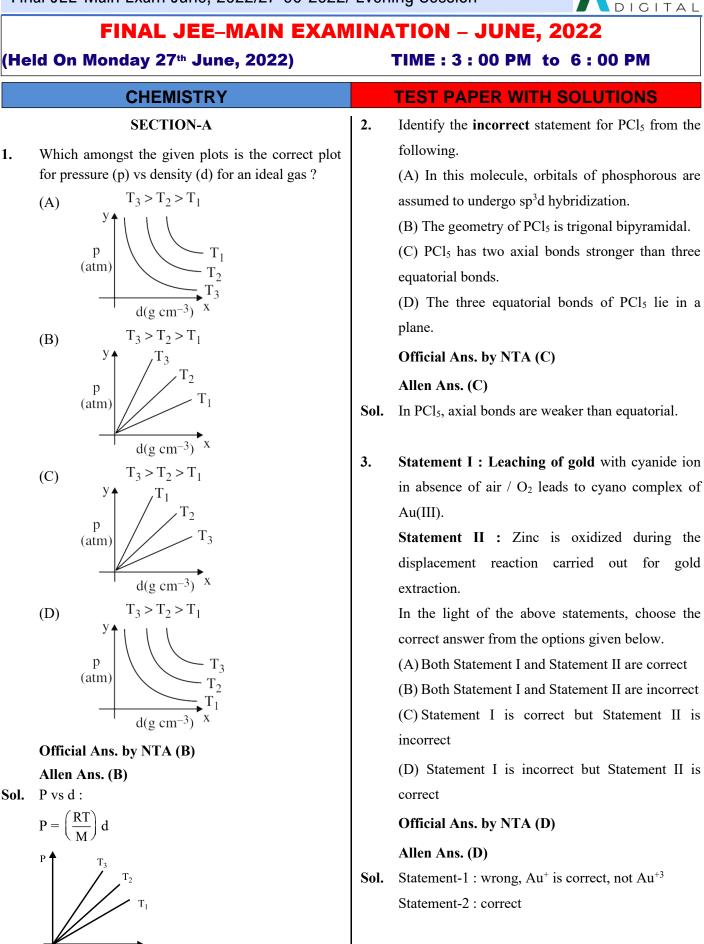
Maximum Marks : 120

### Topic Covered: FULL SYLLABUS

#### Important instruction:

1. Use Blue / Black Ball point pen only.

- 2. There are three sections of equal weightage in the question paper **Physics, Chemistry** and **Mathematics** having 30 questions in each subject. Each paper have 2 sections A and B.
- 3. You are awarded +4 marks for each correct answer and -1 marks for each incorrect answer.
- 4. Use of calculator and other electronic devices is not allowed during the exam.
- 5. No extra sheets will be provided for any kind of work.


| Name of the Candidate (in Capitals)  |                           |
|--------------------------------------|---------------------------|
| Father's Name (in Capitals)          |                           |
| Form Number : in figures             |                           |
| : in words                           |                           |
| Centre of Examination (in Capitals): |                           |
| Candidate's Signature:               | Invigilator's Signature : |

**Rough Space** 

### YOUR TARGET IS TO SECURE GOOD RANK IN JEE-MAIN

Corporate Office : **ALLEN Digital Pvt. Ltd.**, "One Biz Square", A-12 (a), Road No. 1, Indraprastha Industrial Area, Kota (Rajasthan) INDIA-324005

🕸 +91-9513736499 | 🖸 +91-7849901001 | 📾 wecare@allendigital.in | 🌐 www.allendigital.in



© **ALLEN** Digital Pvt. Ltd.

 $T_3 > T_2 > T_1$ 

1.

(A)

(B)

(C)

(D)

## JEE-MAIN 2022 (CHEMISTRY)



| 4.                                                                        | The correct order of increasing intermolecular                                                                                                 | 7.   | Given below are two statements: one is labelled as                                                                                             |  |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| hydrogen bond strength is<br>(A) HCN < H <sub>2</sub> O < NH <sub>3</sub> |                                                                                                                                                |      | Assertion A and the other is labelled as Reason R.                                                                                             |  |
|                                                                           |                                                                                                                                                |      | Assertion A : Flourine forms one oxoacid.                                                                                                      |  |
|                                                                           | (B) HCN $<$ CH <sub>4</sub> $<$ NH <sub>3</sub>                                                                                                |      | <b>Reason R :</b> Flourine has smallest size amongst all halogens and is highly electronegative                                                |  |
|                                                                           | (C) $CH_4 < HCN < NH_3$                                                                                                                        |      | In the light of the above statements, choose the                                                                                               |  |
|                                                                           | (D) $CH_4 < NH_3 < HCN$                                                                                                                        |      | most appropriate answer from the options given                                                                                                 |  |
|                                                                           | Official Ans. by NTA (C)                                                                                                                       |      | below.                                                                                                                                         |  |
|                                                                           | Allen Ans. (C)                                                                                                                                 |      | (A) Both A and R are correct and R is the correct                                                                                              |  |
| C al                                                                      |                                                                                                                                                |      | explanation of A.<br>(P) Path A and P are correct but P is NOT the                                                                             |  |
| Sol.                                                                      | Order of H-Bonding<br>CH <sub>4</sub> < HCN < NH <sub>3</sub><br>NCH NCH                                                                       |      | (B) Both A and R are correct but R is NOT the correct explanation of A.                                                                        |  |
|                                                                           |                                                                                                                                                |      | (C) A is correct but R is not correct.                                                                                                         |  |
|                                                                           |                                                                                                                                                |      | (D) A is not correct but R is correct                                                                                                          |  |
|                                                                           | H <sub>2</sub> NH NH <sub>3</sub><br>The correct order of increasing ionic radii is                                                            |      | Official Ans. by NTA (A)                                                                                                                       |  |
| 5.                                                                        |                                                                                                                                                |      | Allen Ans. (A)                                                                                                                                 |  |
|                                                                           | (A) $Mg^{2+} < Na^+ < F^- < O^{2-} < N^{3-}$                                                                                                   | Sol. | Both A and R are correct and R is the correct                                                                                                  |  |
|                                                                           | (B) $N^{3-} < O^{2-} < F^- < Na^+ < Mg^{2+}$                                                                                                   |      | explanation of A.                                                                                                                              |  |
|                                                                           | (C) $F^- < Na^+ < O^{2-} < Mg^{2+} < N^{3-}$                                                                                                   | 8.   | In 3d series, the metal having the highest M <sup>2+</sup> /M                                                                                  |  |
|                                                                           | (D) $Na^+ < F^- < Mg^{2+} < O^{2-} < N^{3-}$                                                                                                   | 0.   | standard electrode potential is                                                                                                                |  |
|                                                                           | Official Ans. by NTA (A)                                                                                                                       |      | (A) Cr (B) Fe                                                                                                                                  |  |
|                                                                           | •                                                                                                                                              |      | (C) Cu (D) Zn                                                                                                                                  |  |
|                                                                           | Allen Ans. (A)                                                                                                                                 |      | Official Ans. by NTA (C)                                                                                                                       |  |
| Sol.                                                                      | $N^{-3} > O^{-2} > F^{-} > Na^{+} > Mg^{+2}$ (Radii)                                                                                           |      | Allen Ans. (C)                                                                                                                                 |  |
|                                                                           | <ul><li>(Isoelectronic species)</li><li>The gas produced by treating an aqueous solution of ammonium chloride with sodium nitrite is</li></ul> |      | $Cr^{+2}/Cr \rightarrow -0.90 V$                                                                                                               |  |
| 6.                                                                        |                                                                                                                                                |      | $Fe^{+2}/Fe \rightarrow -0.44 V$<br>$Cu^{+2}/Cu \rightarrow +0.34 V$                                                                           |  |
|                                                                           |                                                                                                                                                |      | $\operatorname{Cu}^{+2/Zn} \rightarrow -0.76 \text{ V}$                                                                                        |  |
|                                                                           | (A) NH <sub>3</sub> (B) N <sub>2</sub>                                                                                                         |      | So Ans. $Cu^{+2}/Cu$                                                                                                                           |  |
|                                                                           | (C) $N_2O$ (D) $Cl_2$                                                                                                                          | 9.   | The 'f' orbitals are half and completely filled,                                                                                               |  |
|                                                                           |                                                                                                                                                |      | respectively in lanthanide ions                                                                                                                |  |
|                                                                           | Official Ans. by NTA (B)                                                                                                                       |      | (Given: Atomic no. Eu, 63; Sm, 62; Tm, 69; Tb,                                                                                                 |  |
|                                                                           | Allen Ans. (B)                                                                                                                                 |      | 65; Yb, 70; Dy, 66]                                                                                                                            |  |
| Sol.                                                                      | $\rm NH_4Cl + NaNO_2 \rightarrow \rm NH_4NO_2 + NaCl$                                                                                          |      | (A) $Eu^{2+}$ and $Tm^{2+}$ (B) $Sm^{2+}$ and $Tm^{3+}$<br>(C) $Th^{4+}$ and $Vh^{2+}$ (D) $Dr^{3+}$ and $Vh^{3+}$                             |  |
|                                                                           | $\downarrow$                                                                                                                                   |      | <ul> <li>(C) Tb<sup>4+</sup> and Yb<sup>2+</sup></li> <li>(D) Dy<sup>3+</sup> and Yb<sup>3+</sup></li> <li>Official Ans. by NTA (C)</li> </ul> |  |
|                                                                           | $N_2 + 2H_2O$                                                                                                                                  |      | Allen Ans. (C)                                                                                                                                 |  |
|                                                                           |                                                                                                                                                |      |                                                                                                                                                |  |

### Final JEE-Main Exam June, 2022/27-06-2022/ Evening Session

ALLEN

|      |                                                                                  | <b>I</b> | • DIGITAL                                                                                                    |
|------|----------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------|
| Sol. | $Tb \rightarrow 4f^9 6s^2$                                                       | 11.      | On the surface of polar stratospheric clouds,                                                                |
|      | $\mathrm{Tb}^{+4} \rightarrow \mathrm{4f}^7$                                     |          | hydrolysis of chlorine nitrate gives A and B while                                                           |
|      | $Yb \rightarrow 4f^{14}6s^2$                                                     |          | its reaction with HCl produces B and C. A, B and                                                             |
|      | $Yb^{+2} \rightarrow 4f^{14}$                                                    |          | C are, respectively                                                                                          |
| 10.  | Arrange the following coordination compounds in                                  |          | (A) HOCl, HNO <sub>3</sub> , $Cl_2$                                                                          |
|      | the increasing order of magnetic moments.                                        |          | (B) Cl <sub>2</sub> , HNO <sub>3</sub> , HOCl                                                                |
|      | (Atomic numbers: $Mn = 25$ ; $Fe = 26$ )                                         |          | (C) $HClO_2$ , $HNO_2$ , $HOCl$                                                                              |
|      | (A) $[FeF_6]^{3-}$                                                               |          | (D) HOCl, $HNO_2$ , $Cl_2O$                                                                                  |
|      | (B) $[Fe(CN)_6]^{3-}$                                                            |          | Official Ans. by NTA (A)                                                                                     |
|      | (C) $[MnCl_6]^{3-}$ (high spin)                                                  |          | Allen Ans. (A)                                                                                               |
|      | (D) $[Mn(CN)_6]^{3-}$                                                            |          | $N - O - Cl + H_2O \longrightarrow N - OH + HOCl$                                                            |
|      | (A) $A < B < D < C$ (B) $B < D < C < A$                                          | Sol.     | $O^{\boldsymbol{\ell}}$ $O^{\boldsymbol{\ell}}$ $(B)$ $(A)$                                                  |
|      | (C) $A < C < D < B$ (D) $B < D < A < C$                                          |          | $ \overset{O}{\longrightarrow} N - O - Cl + HCl \longrightarrow \overset{O}{\longrightarrow} N - OH + Cl_2 $ |
|      | Official Ans. by NTA (B)                                                         |          | $O^{\mathbf{k}}$ $O^{\mathbf{k}}$ $O^{\mathbf{k}}$ $(B)$ $(C)$                                               |
|      | Allen Ans. (B)                                                                   | 12.      | Which of the following is most stable?                                                                       |
| Sol. | (A) $[FeF_6]^{3-}$                                                               |          | (A) 🕀                                                                                                        |
|      | $Fe^{+3} \rightarrow 3d^5 4s^0$                                                  |          |                                                                                                              |
|      | n = 5                                                                            |          | $\angle$                                                                                                     |
|      | (B) $[Fe(CN)_6]^{3-}$                                                            |          | (B) 🛱                                                                                                        |
|      |                                                                                  |          |                                                                                                              |
|      | $\rightarrow$                                                                    |          |                                                                                                              |
|      | 11111                                                                            |          | (C) <b>P</b>                                                                                                 |
|      | $Fe^{+3} \rightarrow 3d^5 4s^0$                                                  |          |                                                                                                              |
|      | n = 1                                                                            |          |                                                                                                              |
|      | (C) $[MnCl_6]^{3-}$                                                              |          | (D)                                                                                                          |
|      |                                                                                  |          |                                                                                                              |
|      | $\rightarrow$                                                                    |          |                                                                                                              |
|      | 1111                                                                             |          | Official Ans. by NTA (A)                                                                                     |
|      | $Mn^{+3} \rightarrow 3d^4 4s^0$ $n = 4$ (D) [Mn(CN) <sub>6</sub> ] <sup>3-</sup> |          | Allen Ans. (A)                                                                                               |
|      |                                                                                  |          | R                                                                                                            |
|      |                                                                                  |          |                                                                                                              |
|      |                                                                                  |          | $\angle$ — $\rightarrow$ is most stable as it is aromatic.                                                   |
|      | $\rightarrow$                                                                    |          |                                                                                                              |
|      | 11111                                                                            |          |                                                                                                              |
|      | $Mn^{+3} \rightarrow 3d^4 4s^0$                                                  |          |                                                                                                              |
|      | n=2                                                                              |          |                                                                                                              |
|      | $\mu \Longrightarrow A > C > D > B$                                              |          |                                                                                                              |
| _    |                                                                                  |          |                                                                                                              |

© ALLEN Digital Pvt. Ltd.



JEE-MAIN 2022 (CHEMISTRY) What will be the major product of following Product 'A' of following sequence of reactions is 13. 14.  $\xrightarrow[(b) Cl_2, \Lambda]{(b) Cl_2, \Lambda} 'A'(Major product)$ Ethylbenzene sequence of reactions? Cl (i) n - BuLi, (A)  $n-Bu = \frac{n-C_5H_{11}Cl}{(ii) Lindlar cat, H_2}$ C=CH<sub>2</sub> ∕n–Bu (A) Br (B) C=CH, n–Bu  $H_{11}C_5$ n–Bu (B) Cl (C)  $-C_5H_{11}$ n-Bu ılı  $H_{11}C_5$ (C) n-Bu Br  $C_5H_{11}$ (D) CH=CH<sub>2</sub> (D) n–Bu Br Official Ans. by NTA (C) Official Ans. by NTA (D) Allen Ans. (C) Allen Ans. (D) Sol.  $CH_2 - CH_3$ nBuLi  $n - Bu - C \equiv CH$ Sol.  $Br_2, Fe$ (acid base EAS reaction reaction) Ο  $n - Bu - C \equiv C^{-}Li^{+}$ Ċl  $n - C_5 H_{11} Cl \downarrow (SN reaction)$ CH-CH<sub>3</sub>  $Cl_2, \Delta$ C<sub>5</sub>H<sub>11</sub> benzylic n-Bu halogenation Ο  $\frac{H_2}{Lindlar's} n - Bu - C \equiv C - C_5 H_{11}$ Catalyst Br  $CH = CH_2$ alc. KOH Ο (elimination reaction)

Br

 $CH_2 - CH_3$ 

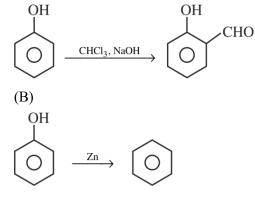
Ο

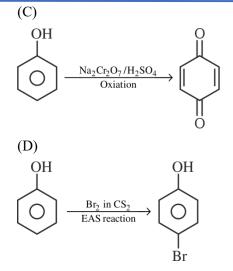
Br

### Final JEE-Main Exam June, 2022/27-06-2022/ Evening Session

# 

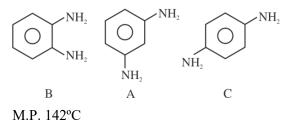
Choose the correct answer from the options given below:


(A) A-IV, B-III, C-II, D-I
(B) A-IV, B-III, C-I, D-II
(C) A-II, B-III, C-I, D-IV
(D) A-IV, B-II, C-III, D-I


Official Ans. by NTA (A)

Allen Ans. (A)




15.





16. Decarboxylation of all six possible forms of diaminobenzoic acids C<sub>6</sub>H<sub>3</sub>(NH<sub>2</sub>)<sub>2</sub>COOH yields three products A, B and C. Three acids give a product 'A', two acids gives a product 'B' and one acid give a product 'C'. The melting point of product 'C' is

Sol.



**17.** Which is true about Buna-N?

(A) It is a linear polymer of 1, 3-butadiene.

(B) It is obtained by copolymerization of 1, 3-butadiene and styrene.

(C) It is obtained by copolymerization of 1, 3butadiene and acrylonitrile.

(D) The suffix N in Buna-N stands for its natural occurrence

Official Ans. by NTA (C) Allen Ans. (C)

### JEE-MAIN 2022 (CHEMISTRY)

- **Sol.** It is copolymerization of 1, 3-butadiene and acrylonitrile.
- **18.** Given below are two statements.

**Statments I:** Maltose has two  $\alpha$ -D-glucose units linked at C<sub>1</sub> and C<sub>4</sub> and is a reducing sugar.

**Statement II:** Maltose has two monosaccharides:  $\alpha$ -D-glucose and  $\beta$ -D-glucose linked at C<sub>1</sub> and C<sub>6</sub> and it is a non-reducing sugar.

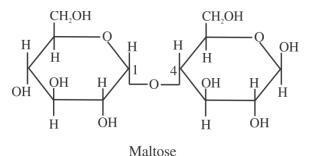
In the light of the above statements, choose the

correct answer from the options given below.

(A) Both Statement I and Statement II are true

(B) Both Statement I and Statement II are false

(C) Statement I is true but Statement II is false


(D) Statement I is false but Statement II is true

Official Ans. by NTA (C)

Allen Ans. (C)

#### Sol.

19.



Match List I with List Ii

| List I          | List II             |  |
|-----------------|---------------------|--|
| A. Antipyretic  | I. Reduces pain     |  |
| B. Analgesic    | II. Reduces stress  |  |
| C. Tranquilizer | III. Reduces fever  |  |
| D. Antacid      | IV. Reduces acidity |  |
|                 | (Stomach)           |  |

Choose the correct answer from the options given below:

(A) A-III, B-I, C-II, D-IV

(B) A-III, B-I, C-IV, D-II

(C) A-I, B-IV, C-II, D-III

(D) A-I, B-III, C-II, D-IV

Official Ans. by NTA (A)

Allen Ans. (A)

| A. Antipyretic  | Reduces fever             |
|-----------------|---------------------------|
| B. Analgesic    | Reduces pain              |
| C. Tranquilizer | Reduces stress            |
| D. Antacid      | Reduces acidity (Stomach) |

20. Match List I with List II

| List I                           | List II                            |
|----------------------------------|------------------------------------|
| (Anion)                          | (Gas evolved on reaction with dil. |
|                                  | H <sub>2</sub> SO <sub>4</sub> )   |
| A. CO <sub>3</sub> <sup>2-</sup> | I. Colourless gas which turns lead |
|                                  | acetate paper black                |
| B. S <sup>2-</sup>               | II. Colourless gas which turns     |
|                                  | acidified potassium dichromate     |
|                                  | solution green.                    |
| C. SO <sub>3</sub> <sup>2-</sup> | III. Brown fumes which turns       |
|                                  | acidified KI solution containing   |
|                                  | starch blue.                       |
| D. NO <sub>2</sub> <sup>-</sup>  | IV. Colourless gas evolved with    |
|                                  | brisk effervescence, which turns   |
|                                  | lime water milky.                  |

Choose the correct answer from the options given below:

(A) A-III, B-I, C-II, D-IV (B) A-II, B-I, C-IV, D-III

(C) A-IV, B-I, C-III, D-II

(D) A-IV, B-I, C-II, D-III

Official Ans. by NTA (D)

Allen Ans. (D)

Sol.  $CO_3^{2-}$  will give  $CO_2(g)$  which will turns lime water milky.

 $S^{2-}$  will give  $H_2S$  (g), will turns lead acetate paper black

SO<sub>3</sub><sup>2-</sup> will give SO<sub>2</sub> (g), which will turns acidified potassium dichromate solution green.

 $NO_2^-$  will give brown  $NO_2(g)$  will turn KI solution blue.



### Final JEE-Main Exam June, 2022/27-06-2022/ Evening Session

- SECTION-B
  1. 116 g of a substance upon dissociation reaction, yields 7.5 g of hydrogen, 60g of oxygen and 48.5 g of carbon. Given that the atomic masses of H, O and C are 1, 16 and 12 respectively. The data agrees with how many formulae of the following?
  - $(A) CH_{3}COOH \qquad (B) HCHO$
  - $(C) CH_3OOCH_3 (D) CH_3CHO$

### Official Ans. by NTA (2)

Allen Ans. (2)

**Sol.** %H =  $\frac{7.5}{116} \times 100 = 6.5$ 

$$\%O = \frac{60}{116} \times 100 = 51.7$$
$$\%C = \frac{48.5}{116} \times 100 = 41.8$$

Relative atomicities =  $H \Rightarrow 6.5$ 

$$O \Rightarrow \frac{51.7}{16} = 3.25$$
$$C \Rightarrow \frac{41.8}{12} = 3.5$$

Emperically formula is approx.. CH<sub>2</sub>O (A) C<sub>2</sub>H<sub>4</sub>O<sub>2</sub> (B) CH<sub>2</sub>O relate to this formula.

Consider the following set of quantum numbers

|    | n | 1 | $m_l$ |
|----|---|---|-------|
| A. | 3 | 3 | -3    |
| B. | 3 | 2 | -2    |
| C. | 2 | 1 | +1    |
| D. | 2 | 2 | +2    |

The number of correct sets of quantum numbers is

### Official Ans. by NTA (2)

### Allen Ans. (2)

Sol. Quantum no. of set (B) and (C) can be correct.(A) and (D) are wrong as n = ℓ is not possible.

BeO reacts with HF in presence of ammonia to give [A] which on thermal decomposition produces [B] and ammonium fluoride. Oxidation state of Be in [A] is\_\_\_\_\_
Official Ans. by NTA (2)
Allen Ans. (2)

When 5 moles of He gas expand isothermally and reversibly at 300 K from 10 litre to 20 litre, the magnitude of the maximum work obtained is \_\_\_\_\_\_\_
J. [nearest integer] (Given: R = 8.3 J K<sup>-1</sup>mol<sup>-1</sup> and log 2 = 0.3010)

Official Ans. by NTA (8630)

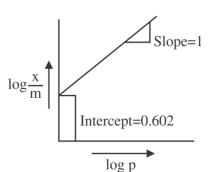
Allen Ans. (8630)

Sol. 
$$n = 5 \mod$$
  
 $T = 300 \text{ K}$   
 $V_1 = 10 \text{ L}$   
 $V_2 = 20 \text{ L}$   
 $w = -nRT \ell n \frac{V_2}{V_1}$   
 $= -5 \times 8.3 \times 300 \times \ell n \frac{20}{10}$   
 $= -8630.38 \text{ J}$ 

5. A solution containing  $2.5 \times 10^{-3}$  kg of a solute dissolved in  $75 \times 10^{-3}$  kg of water boils at 373.535 K. The molar mass of the solute is \_\_\_\_\_ g mol^{-1}. [nearest integer] (Given: K<sub>b</sub> (H<sub>2</sub>O) = 0.52 K Kg mol<sup>-1</sup>, boiling point of water = 373.15K)

Official Ans. by NTA (45)

Allen Ans. (45)


### JEE-MAIN 2022 (CHEMISTRY)



**Sol.** w = 2.5 g $K_{\rm b} = 0.52$ 9. M = Mol. Wt. of solute  $w_{solvent} = 75 g$  $T'_{B} = 373.535 \text{ K}$  $T_{\rm B}^{\rm o} = 373.15 \, {\rm K}$  $\Delta T_{\rm B} = 0.385 = K_{\rm b}$  molality  $0.385 = 0.52 \times \left(\frac{2.5}{M} \times \frac{1000}{75}\right)$  $M = 45 \text{ g mol}^{-1}$ pH value of 0.001 M NaOH solution is 6. Official Ans. by NTA (11) Allen Ans. (11) Sol. 0.001 M NaOH  $[OH^{-}] = 10^{-3}$ pOH = 3Sol. pH = 117. For the reaction taking place in the cell:  $Pt(s) | H_2(g) | H^+(aq) || Ag^+(aq) | Ag(s)$  $E^{o}_{Cell} = +0.5332 \text{ V}.$ The value of  $\Delta_f G^0$  is kJ mol<sup>-1</sup>. (in nearest integer) Official Ans. by NTA (51) Allen Ans. (51 or 103) **Sol.**  $\frac{1}{2}H_2 + Ag^+ \rightarrow H^+ + Ag$  $\Delta G^{\circ} = - nE^{\circ}F$  $= -1 \times 0.5332 \times 96500 \text{ J}$ = -51.35 kJ $(n = 2 \text{ for } H_2 + 2Ag^+ \rightarrow 2H^+ + 2Ag)$ 8. It has been found that for a chemical reaction with rise in temperature by 9K the rate constant gets doubled. Assuming a reaction to be occurring at 300 K, the value of activation energy is found to be kJ mol<sup>-1</sup>. [nearest integer] (Given  $\ln 10 = 2.3$ ,  $R = 8.3 \text{ JK}^{-1}\text{mol}^{-1}$ ,  $\log 2 = 0.30$ ) Official Ans. by NTA (59) Allen Ans. (59)

Sol.

$$log_{10} \frac{K_2}{K_1} = \frac{E_a}{2.303R} \left( \frac{1}{300} - \frac{1}{309} \right)$$
$$0.3 = \frac{E_a}{2.303 \times 8.3} \left( \frac{9}{300 \times 309} \right)$$
$$E_a = \frac{0.3 \times 2.303 \times 8.3 \times 300 \times 309}{9}$$
$$= 59065.04 \text{ J}$$
$$E_a = 59.06 \text{ kJ}$$



If the initial pressure of a gas is 0.03 atm, the mass of the gas adsorbed per gram of the adsorbent is  $\times 10^{-2}$ g.

Official Ans. by NTA (12) Allen Ans. (12) 1

$$\frac{x}{m} = kP^{\overline{n}}$$

$$\log \frac{x}{m} = \log k + \frac{1}{n}\log P$$
From graph
Slope =  $\frac{1}{n} = 1 \Rightarrow n = 1$ 
Intercept = log k = 0.602
k = 4
$$x = 4 \times (0.02)^{\frac{1}{1}}$$

$$\frac{x}{m} = 4 \times (0.03)^{\frac{1}{1}}$$
$$\frac{x}{m} = 12 \times 10^{-2}$$

10. 0.25 g of an organic compound containing chlorine gave 0.40 g of silver chloride in Carius estimation. The percentage of chlorine present in the compound is . [in nearest integer] (Given: Molar mass of Ag is 108 g mol<sup>-1</sup> and that of Cl is  $35.5 \text{ g mol}^{-1}$ ) Official Ans. by NTA (40) Allen Ans. (40)

**Sol.** wt. of organic compound = 
$$0.25$$
 g

mass of Cl = 
$$\frac{35.5}{143.5} \times 0.4$$
g

mass % of Cl in the organic compound

$$=\frac{35.5\times0.4}{143.5\times0.25}\times100$$
  
= 39.58%

V