

JEE-MAIN – JUNE, 2022

(Held On Tuesday 29th June, 2022)

TIME: 9:00 AM to 12:00 PM

Chemistry

Test Pattern : JEE-MAIN Maximum Marks : 120

Topic Covered: FULL SYLLABUS

Important instruction:

- 1. Use Blue / Black Ball point pen only.
- 2. There are three sections of equal weightage in the question paper **Physics, Chemistry** and **Mathematics** having 30 questions in each subject. Each paper have 2 sections A and B.
- 3. You are awarded +4 marks for each correct answer and -1 marks for each incorrect answer.
- 4. Use of calculator and other electronic devices is not allowed during the exam.
- 5. No extra sheets will be provided for any kind of work.

Name of the Candidate (in Capitals)	
Father's Name (in Capitals)	
Form Number : in figures	
: in words	
Centre of Examination (in Capitals):	
Candidate's Signature:	Invigilator's Signature :

Rough Space

YOUR TARGET IS TO SECURE GOOD RANK IN JEE-MAIN

Corporate Office : **ALLEN Digital Pvt. Ltd.,** "One Biz Square", A-12 (a), Road No. 1, Indraprastha Industrial Area, Kota (Rajasthan) INDIA-324005

FINAL JEE-MAIN EXAMINATION - JUNE, 2022

(Held On Wednesday 29th June, 2022)

TIME: 9:00 AM to 12:00 PM

CHEMISTRY

SECTION-A

1. Production of iron in blast furnace follows the following equation

$$Fe_3O_4(s) + 4CO(g) \rightarrow 3Fe(1) + 4CO_2(g)$$

when 4.640~kg of Fe_3O_4 and 2.520~kg of CO are allowed to react then the amount of iron (in g) produced is :

[Given : Molar Atomic mass (g mol $^{-1}$): Fe = 56 Molar Atomic mass (g mol $^{-1}$) : 0 = 16

Molar Atomic mass (g mol⁻¹): = C = 12

- (A) 1400
- (B) 2200
- (C) 3360
- (D) 4200

Official Ans. by NTA (C)

Allen Ans. (C)

Sol. Moles of $\text{Fe}_3\text{O}_4 = \frac{4.640 \times 10^3}{232} = 20$

Moles of CO =
$$\frac{2.52 \times 10^3}{28}$$
 = 90

So limiting Reagent = Fe_3O_4

So moles of Fe formed = 60

Weight of Fe = $60 \times 56 = 3360$ gms

- **2.** Which of the following statements are **correct**?
 - (A) The electronic configuration of Cr is [Ar] 3d⁵ 4s¹.
 - (B) The magnetic quantum number may have a negative value.
 - (C) In the ground state of an atom, the orbitals are filled in order of their increasing energies.
 - (D) The total number of nodes are given by n-2. Choose the **most appropriate** answer from the options given below :
 - (A) (A), (C) and (D) only
 - (B) (A) and (B) only
 - (C) (A) and (C) only
 - (D) (A), (B) and (C) only

Official Ans. by NTA (D)

TEST PAPER WITH SOLUTION

Allen Ans. (D)

- **Sol.** (A) $Cr = [Ar]3d^5 4s^1$
 - (B) $m = -\ell$ to $+\ell$
 - (C) According to Aufbau principle, orbitals are filled in order of their increasing energies.
 - (D) Total nodes = n 1
- **3.** Arrange the following in the decreasing order of their covalent character:
 - (A) LiCl
 - (B) NaCl
 - (C) KCl
 - (D) CsCl

Question: Choose the **most appropriate** answer from the options given below :

(B) (B)
$$>$$
 (A) $>$ (C) $>$ (D)

(D) (A)
$$>$$
 (B) $>$ (D) $>$ (C)

Official Ans. by NTA (C)

Allen Ans. (C)

- **Sol.** LiCl > NaCl > KCl > CsCl (Covalent character)
- **4.** The solubility of AgCl will be maximum in which of the following?
 - (A) 0.01 M KCl
 - (B) 0.01 M HC1
 - (C) 0.01 M AgNO₃
 - (D) Deionised water

Official Ans. by NTA (D)

Allen Ans. (D)

JEE-MAIN 2022 (CHEMISTRY)

- **Sol.** In deionized water no common ion effect will take place so maximum solubility
- **5.** Which of the following is a **correct** statement?
 - (A) Brownian motion destabilises sols.
 - (B) Any amount of dispersed phase can be added to emulsion without destabilising it.
 - (C) Mixing two oppositely charged sols in equal amount neutralises charges and stabilises colloids.
 - (D) Presence of equal and similar charges on colloidal particles provides stability to the colloidal solution.

Official Ans. by NTA (D)

Allen Ans. (D)

- **Sol.** As equal & similar charge particle will repel each other, hence will never precipitate.
- **6.** The electronic configuration of Pt (atomic number 78) is:
 - (A) [Xe] $4f^{14} 5d^9 6s^1$
 - (B) [Kr] 4f14 5d10
 - (C) [Xe] $4f^{14} 5d^{10}$
 - (D) [Xe] $4f^{14} 5d^8 6s^2$

Official Ans. by NTA (A)

Allen Ans. (A)

- **Sol.** $_{78}\text{Pt} = [\text{Xe}] \ 4f^{14} \ 5d^9 \ 6s^1$ (Exceptional electronic configuration)
- 7. In isolation of which one of the following metals from their ores, the use of cyanide salt is not commonly involved?
 - (A) Zinc
 - (B) Gold
 - (C) Silver
 - (D) Copper

Official Ans. by NTA (D)

Allen Ans. (D)

Sol. For ZnS, KCN is used as depressant.

For Gold and silver \Rightarrow leaching [Cyanide process]

- **8.** Which one of the following reactions indicates the reducing ability of hydrogen peroxide in basic medium?
 - (A) $HOC1 + H_2O_2 \rightarrow H_3O^+ + C1^- + O_2$
 - (B) PbS $+ 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$
 - (C) $2MnO_4^- + 3H_2O_2 \rightarrow 2MnO_2 + 3O_2 + 2H_2O + 2OH^-$
 - (D) $Mn^{2+} + H_2O_2 \rightarrow Mn^{4+} + 2OH^{-}$

Official Ans. by NTA (C)

Allen Ans. (C)

Sol. In option (A) and (C) reducing action of hydrogen peroxide is shown.

In option (A) it is in acidic medium, in option (B) it is in basic medium.

or

For reducing ability H_2O_2 changes to O_2 , i.e. oxidize, so in option 'A' & 'C' O_2 is formed but 'A' is in acidic medium so option - C correct.

9. Match the List-I with List-II.

List-I	List-II		
(Metal)	(Emitted light		
	wavelength (nm))		
(A) Li	(I) 670.8		
(B) Na	(II) 589.2		
(C) Rb	(III) 780.0		
(D) Cs	(IV) 455.5		

Choose the **most appropriate** answer from the options given below:

- (A) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)
- (B)(A)-(III),(B)-(II),(C)-(I),(D)-(IV)
- (C) (A)-(III), (B)-(I), (C)-(II), (D)-(IV)
- (D) (A)-(IV), (B)-(II), (C)-(I), (D)-(III)

Official Ans. by NTA (A)

Allen Ans. (A)

Sol. NCERT Table 10.1.5

Metal	Li	Na	K	Rb	Cs
Colour	Crimson	Yellow	Violet	Red	Blue
	red			Violet	
λ/nm	670.8	589.2	766.5	780.0	455.5

Final JEE-Main Exam June, 2022/29-06-2022/ Morning Session

10. Match the List-I with List-II.

List-I	List-II			
(Metal)	Application			
(A) Cs	(I) High temperature			
	thermometer			
(B) Ga	(II) Water repellent			
	sprays			
(C) B	(III) Photoelectric cells			
(D) Si	(IV) Bullet proof vest			

Choose the most appropriate answer from the option given below:

- (A) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
- (B)(A)-(IV),(B)-(III),(C)-(II),(D)-(I)
- (C) (A)-(II), (B)-(III), (C)-(IV), (D)-(I)
- (D) (A)-(I), (B)-(IV), (C)-(II), (D)-(III)

Official Ans. by NTA (A)

Allen Ans. (A)

Sol. Caesium is used in devising photoelectric cells.

Boron fibres are used in making bullet–proof vest. Silicones being surrounded by non–polar alkyl groups are water repelling in nature.

Gallium is less toxic and has a very high boiling point, so it is used in high temperature thermometers.

- 11. The oxoacid of phosphorus that is easily obtained from a reaction of alkali and white phosphorus and has two P-H bonds, is:
 - (A) Phosphonic acid
 - (B) Phosphinic acid
 - (C) Pyrophosphorus acid
 - (D) Hypophosphoric acid

Official Ans. by NTA (B)

Allen Ans. (B)

Sol. $P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$ oxoacid = H_3PO_2 (hypo phosphorus acid) or (phosphinic acid)

- The acid that is believed to be mainly responsible for the damage of Taj Mahal is
 (A) Sulfuric acid (B) Hydrofluoric acid
 (C) Phosphoric acid (D) Hydrochloric acid
 Official Ans. by NTA (A)
- **Sol.** $CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + H_2O + CO_2$
- 13. Two isomers 'A' and 'B' with molecular formula C₄H₈ give different products on oxidation with KMnO₄ in acidic medium. Isomer 'A' on reaction with KMnO₄/H⁺ results in effervescence of a gas and gives ketone. The compound 'A' is
 - (A) But-1-ene

Allen Ans. (A)

- (B) cis-But-2-ene
- (C) trans-But-2ene
- (D) 2-methyl propene

Official Ans. by NTA (D)

Allen Ans. (D)

Sol.
$$CH_3$$
 $C=CH_2$ $KMnO_4/H^f$ CH_3 $C=O$ CH_3 $C=O$

14.
$$(CH_{j})_{j,CLi} \xrightarrow{(i) CO_{j}} (A) \xrightarrow{(i) CO_{j}} (DH_{j})_{j,CLi}$$

In the given conversion the compound A is:

	8- · · · · · · · · · · · · · · · · · · ·
(A)	OH
(B)	OLi
(C)	OC(CH ₃) ₃
(D)	OH

Official Ans. by NTA (B)

Allen Ans. (B)

JEE-MAIN 2022 (CHEMISTRY)

ALLEN

Sol.

$$\begin{array}{c} \text{Br} \\ \text{OH} \\$$

15. Given below are two statements :

Statement I : The esterification of carboxylic acid with an alcohol is a nucleophilic acyl substitution.

Statement II: Electron withdrawing groups in the carboxylic acid will increase the rate of esterification reaction.

Choose the **most appropriate** option:

- (A) Both **Statement I** and **Statement II** are correct.
- (B) Both **Statement I** and **Statement II** are incorrect.
- (C) Statement I is correct but Statement II is incorrect.
- (D) Statement I is incorrect but Statement II is correct.

Official Ans. by NTA (A)

Allen Ans. (A)

R-OH + R-C-OH
$$\longrightarrow$$
 R-O-C-R nucleophilic acyl substitution

electron with drawing group on carboxylic acid will increase the rate of esterification

16.
$$\xrightarrow{\text{Br}_{i}(\text{excess})} A \xrightarrow{\text{Major Product}} \xrightarrow{\text{(i) (CH,CO),O}} B \xrightarrow{\text{(ii) HCI}} Major \text{ Product}$$

Consider the above reaction, the product A and

Official Ans. by NTA (C) Allen Ans. (C)

Sol.
$$\begin{array}{c}
NH_2 \\
Br_2 \text{ (excess)} \\
H_2O
\end{array}$$
Br

$$\begin{array}{c|c}
NH_2 & O & O \\
\parallel & \parallel \\
O & O \\
NH-C-CH_3
\end{array}$$

$$\begin{array}{c|c}
NH-C-CH_3
\end{array}$$

$$\begin{array}{c|c}
Br_2|CH_3COOH
\end{array}$$

$$\begin{array}{c|c}
O \\
\parallel \\
NH-C-NH_3
\end{array}$$

$$\begin{array}{c|c}
HC1 \\
Br
\end{array}$$

$$\begin{array}{c|c}
Br
\end{array}$$

Final JEE-Main Exam June, 2022/29-06-2022/ Morning Session

- 17. The polymer, which can be stretched and retains its original status on releasing the force is
 - (A) Bakelite
- (B) Nylon 6,6
- (C) Buna-N
- (D) Terylene

Official Ans. by NTA (C)

Allen Ans. (C)

Buna - N is synthetic rubber which can be stretched and retains its original status on releasing the force.

- **18.** Sugar moiety in DNA and RNA molecules respectively are
 - (A) β -D-2-deoxyribose, β -D-deoxyribose
 - (B) β -D-2-deoxyribose, β -D-ribose
 - (C) β -D-ribose, β -D-2-deoxyribose
 - (D) β -D-deoxyribose, β -D-2-deoxyribose

Official Ans. by NTA (B)

Allen Ans. (B)

- **Sol.** DNA contains $\Rightarrow \beta D 2$ deoxyribose RNA contains $\Rightarrow \beta D$ ribose
- 19. Which of the following compound does not contain sulphur atom ?
 - (A) Cimetidine
- (B) Ranitidine
- (C) Histamine
- (D) Saccharin

Official Ans. by NTA (C)

Allen Ans. (C)

Sol. Histamine

Histamine is nitrogenous compound it does not contain sulpher.

20. Given below are two statements.

Statement I : Phenols are weakly acidic.

Statement II: Therefore they are freely soluble in NaOH solution and are weaker acids than alcohols and water.

Choose the **most appropriate** option:

- (A) Both **Statement I** and **Statement II** are correct.
- (B) Both Statement I and Statement II are incorrect.
- (C) Statement I is correct but Statement II is incorrect.
- (D) **Statement I** is incorrect but **Statement II** is correct.

Official Ans. by NTA (C)

Allen Ans. (C)

Sol. Phenol are weakly acidic. Phenol is more acidic than alcohol & H₂O statement (I) is correct. (II) is incorrect.

SECTION-B

1. Geraniol, a volatile organic compound, is a component of rose oil. The density of the vapour is $0.46~\rm gL^{-1}$ at $257^{\circ}\rm C$ and $100~\rm mm$ Hg. The molar mass of geraniol is ______ (Nearest Integer) [Given R = $0.082~\rm L$ atm K⁻¹ mol⁻¹]

Official Ans. by NTA (152)

Allen Ans. (152)

Sol. Assuming ideal behaviour $P = \frac{dRT}{M}$

$$P = \frac{100}{760}$$
 atm, $T = 257 + 273 = 530$ K

d = 0.46 gm/L

So M =
$$\frac{0.46 \times 0.082 \times 530}{100} \times 760$$

= 151.93 ≈ 152

JEE-MAIN 2022 (CHEMISTRY)

2. 17.0 g of NH₃ completely vapourises at – 33.42°C and 1 bar pressure and the enthalpy change in the process is 23.4 kJ mol⁻¹. The enthalpy change for the vapourisation of 85 g of NH₃ under the same conditions is _____ kJ.

Official Ans. by NTA (117)

Allen Ans. (117)

- **Sol.** Given data is for 1 moles and asked for 5 moles so value is $23.4 \times 5 = 117 \text{ kJ}$
- 3. 1.2 mL of acetic acid is dissolved in water to make 2.0 L of solution. The depression in freezing point observed for this strength of acid is 0.0198°C. The percentage of dissociation of the acid is ______. (Nearest integer)

[Given : Density of acetic acid is $1.02~g~mL^{-1}$ Molar mass of acetic acid is $60~g~mol^{-1}$

 $K_f(H_2O) = 1.85 \text{ K kg mol}^{-1}$

Official Ans. by NTA (5)

Allen Ans. (5)

Sol. $M = d \times V = 1.02 \times 1.2 = 1.224 \text{ gm}$

Moles of acetic acid = 0.0204 moles in 2L

So molality = 0.0102 mol/kg

Now $\Delta T_f = i \times K_f \times M$

 $i = 1 + \alpha$ for acetic acid

 $0.0198 = (1 + \alpha) \times 1.85 \times 0.0102$

 $\alpha = 0.04928$

≅ 5%

4. A dilute solution of sulphuric acid is electrolysed using a current of 0.10 A for 2 hours to produce hydrogen and oxygen gas. The total volume of gases produced at STP is _____ cm³. (Nearest integer) [Given: Faraday constant F = 96500 C mo1⁻¹ at STP, molar volume of an ideal gas is 22.7 L mo1⁻¹]

Official Ans. by NTA (127)

Allen Ans. (127)

Sol. At anode

$$2H_2O \rightarrow O_2(g) + 4H^+ + 4e^-$$

At cathode

$$2H^+ + 2e^- \rightarrow H_2(g)$$

Now number of gm eq. = $\frac{i \times t}{96500}$

$$=\frac{0.1\times2\times60\times60}{96500}$$

= 0.00746

$$V_{O_2} = \frac{0.00746}{4} \times 22.7 = 0.0423$$

$$V_{H_2} = \frac{0.00746}{2} \times 22.7 = 0.0846$$

 $V_{Total} \approx 127 \text{ ml or cc}$

5. The activation energy of one of the reactions in a biochemical process is $532611 \text{ J} \text{ mol}^{-1}$. When the temperature falls from 310 K to 300 K, the change in rate constant observed is $k_{300} = x \times 10^{-3} k_{310}$. The value of x is

[Given: 1n10 = 2.3

 $R=8.3 \text{ J K}^{-1} \text{ mol}^{-1}$

Official Ans. by NTA (1)

Allen Ans. (1)

Sol.
$$\ell n \left(\frac{K_2}{K_1} \right) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

$$\ell n \left(\frac{K_2}{K_1} \right) = \frac{532611}{8.3} \times \left(\frac{10}{310 \times 300} \right)$$

where K_2 is at 310 K & K_1 is at 300 K

$$\ell n \left(\frac{K_2}{K_1} \right) = 6.9$$

$$= 3 \times \ell n 10$$

$$\ell n \frac{K_2}{K_1} = \ell n 10^3$$

$$K_2 = K_1 \times 10^3$$

$$K_1 = K_2 \times 10^3$$

So
$$K = 1$$

Final JEE-Main Exam June, 2022/29-06-2022/ Morning Session

6. The number of terminal oxygen atoms present in the product B obtained from the following reaction is

$$FeCr_2O_4 + Na_2CO_3 + O_2 \rightarrow A + Fe_2O_3 + CO_2$$

$$A + H^+ \rightarrow B + H_2O + Na^+$$

Official Ans. by NTA (6)

Allen Ans. (6)

Sol.
$$4\text{FeCr}_2\text{O}_4 + 8\text{Na}_2\text{CO}_3 + 7\text{O}_2 \rightarrow 8\text{Na}_2\text{CrO}_4 + 2\text{Fe}_2\text{O}_3 + 8\text{CO}_2$$

$$2Na_2CrO_4 + 2H^+ \rightarrow \underbrace{Na_2Cr_2O_7}_{B} + 2Na^+ + H_2O$$

$$2Na^{+} \begin{bmatrix} O & & & \\ O & & \\ O & & \\ O & & \end{bmatrix}^{2-}$$

Official Ans. by NTA (0)

Allen Ans. (0)

Sol.
$$3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^{-+7} + MnO_2 + 2H_2O$$

 $Mn = no.$ of unpaired electrons is '0'
 $\mu = 0$ B.M.

8. Kjeldahl's method was used for the estimation of nitrogen in an organic compound. The ammonia evolved from 0.55 g of the compound neutralised 12.5 mL of 1 M H₂SO₄ solution. The percentage of nitrogen in the compound is ______. (Nearest integer)

Official Ans. by NTA (64)

Allen Ans. (64)

Sol. Meg of H_2SO_4 used by $NH_3 = 12.5 \times 1 \times 2 = 25$

% of N in the compound =
$$\frac{25 \times 10^{-3} \times 14 \times 100}{0.55}$$
 = 63.6

۸r

Meq. of
$$H_2SO_4$$
 = Meq. of NH_3
12. $5 \times 1 \times 2$ = 25 meq. of NH_3
= 25 millimoles of NH_3
So Millimoles of $N' = 25$
Moles of $N' = 25 \times 10^{-3}$

wt. of N =
$$14 \times 25 \times 10^{-3}$$

$$\% N = \frac{14 \times 25 \times 10^{-3}}{0.55} \times 100$$

$$= 63.66$$

9. Observe structures of the following compounds

The total number of structures/compounds which possess asymmetric carbon atoms is ______.

Official Ans. by NTA (3)

Allen Ans. (3)

Number of compounds containing asymmetric carbons are three.

10.
$$C_6H_{12}O_6 \xrightarrow{Zymase} A \xrightarrow{NaOI} B + CHI_3$$

The number of carbon atoms present in the product B is

Official Ans. by NTA (1)

Allen Ans. (1)

Sol.

$$\begin{array}{c} \text{C}_{6}\text{H}_{12}\text{O}_{6} \xrightarrow{\text{Zymase}} \text{CH}_{3}\text{CH}_{2}\text{OH} + \text{CO}_{2} \\ & & \downarrow \text{NaOI} \\ & & \downarrow \text{CHI}_{3} + \text{H-C-O-Na}^{+} \end{array}$$

no. of carbon atoms present in B is 1