A аие D \| G \| T A L JEE-MAIN - JUNE, 2022

(Held On Tuesday 25 ${ }^{\text {th }}$ June, 2022)
TIME : 9:00 AM to 12:00 PM Mathematics
Test Pattern : JEE-MAIN
Maximum Marks : 120

Topic Covered: FULL SYLLABUS

Important instruction:

1. Use Blue / Black Ball point pen only.
2. There are three sections of equal weightage in the question paper Physics, Chemistry and Mathematics having 30 questions in each subject. Each paper have 2 sections A and B.
3. You are awarded +4 marks for each correct answer and -1 marks for each incorrect answer.
4. Use of calculator and other electronic devices is not allowed during the exam.
5. No extra sheets will be provided for any kind of work.

Name of the Candidate (in Capitals)
Father's Name (in Capitals)
Form Number : in figures
: in words
Centre of Examination (in Capitals):
Candidate's Signature: \qquad Invigilator's Signature : \qquad

Rough Space

YOUR TARGET IS TO SECURE GOOD RANK IN JEE-MAIN

Corporate Office : ALLEN Digital Pvt. Ltd., "One Biz Square", A-12 (a), Road No. 1, Indraprastha Industrial Area, Kota (Rajasthan) INDIA-324005
(i) +91-9513736499 | © +91-7849901001 | (wecare@allendigital.in | \oplus www.allendigital.in

FINAL JEE-MAIN EXAMINATION - JUNE, 2022

(Held On Saturday 25 ${ }^{\text {th }}$ June, 2022)

MATHEMATICS

SECTION-A

1. Let a circle C touch the lines $\mathrm{L}_{1}: 4 \mathrm{x}-3 \mathrm{y}+\mathrm{K}_{1}$ $=0$ and $\mathrm{L}_{2}: 4 \mathrm{x}-3 \mathrm{y}+\mathrm{K}_{2}=0, \mathrm{~K}_{1}, \mathrm{~K}_{2} \in \mathrm{R}$. If a line passing through the centre of the circle C intersects L_{1} at $(-1,2)$ and L_{2} at $(3,-6)$, then the equation of the circle C is
(A) $(x-1)^{2}+(y-2)^{2}=4$
(B) $(x+1)^{2}+(y-2)^{2}=4$
(C) $(x-1)^{2}+(y+2)^{2}=16$
(D) $(x-1)^{2}+(y-2)^{2}=16$

Official Ans. by NTA (C)
Allen Ans. (C)

Sol.

$\mathrm{L}_{1}: 4 \mathrm{x}-3 \mathrm{y}+\mathrm{K}_{1}=0$
$\mathrm{L}_{2}: 4 \mathrm{x}-3 \mathrm{y}+\mathrm{K}_{2}=0$
now
$-4-6+\mathrm{K}_{1}=0 \Rightarrow \mathrm{~K}_{1}=10$
$12+18+\mathrm{K}_{2}=0 \Rightarrow \mathrm{~K}_{2}=-30$
\Rightarrow Tangent to the circle are

$$
\begin{aligned}
& 4 x-3 y+10=0 \\
& 4 x-3 y-30=0
\end{aligned}
$$

Length of diameter $2 \mathrm{r}=\frac{|10+30|}{5}=8$
$\Rightarrow \mathrm{r}=4$
Now centre is mid point of A \& B
$\mathrm{x}=1, \mathrm{y}=-2$
Equation of circle
$(\mathrm{x}-1)^{2}+(\mathrm{y}+2)^{2}=16$ Ans.

TIME: 9:00 AM to 12:00 PM

TEST PAPER WITH SOLUTION

2. The value of $\int_{0}^{\pi} \frac{e^{\cos x} \sin x}{\left(1+\cos ^{2} x\right)\left(e^{\cos x}+e^{-\cos x}\right)} d x$ is equal to
(A) $\frac{\pi^{2}}{4}$
(B) $\frac{\pi^{2}}{2}$
(C) $\frac{\pi}{4}$
(D) $\frac{\pi}{2}$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $\int_{0}^{\pi} \frac{e^{\cos x} \sin x}{\left(1+\cos ^{2} x\right)\left(e^{\cos x}+e^{-\cos x}\right)} d x$
Use King's property
$I=\int_{0}^{\pi} \frac{e^{-\cos x} \sin x}{\left(1+\cos ^{2} x\right)\left(e^{-\cos x}+e^{\cos x}\right)} d x$
On adding equation (1) and (2), we get
$2 I=\int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x=2 \int_{0}^{\pi / 2} \frac{\sin x}{1+\cos ^{2} x} d x$
On putting $\cos \mathrm{x}=\mathrm{t}$, we get
$\mathrm{I}=\int_{0}^{1} \frac{\mathrm{dt}}{1+\mathrm{t}^{2}}=\left(\tan ^{-1} \mathrm{t}\right)_{0}^{1}=\frac{\pi}{4}$
3. Let a, b and c be the length of sides of a triangle
$A B C$ such that $\frac{a+b}{7}=\frac{b+c}{8}=\frac{c+a}{9}$. If r and R are the radius of incircle and radius of circumcircle of the triangle ABC, respectively, then the value of $\frac{R}{r}$ is equal to
(A) $\frac{5}{2}$
(B) 2
(C) $\frac{3}{2}$
(D) 1

Official Ans. by NTA (A)
Allen Ans. (A)

Sol. $\frac{a+b}{7}=\frac{b+c}{8}=\frac{c+a}{9}=\lambda$
$\mathrm{a}+\mathrm{b}=7 \lambda, \mathrm{~b}+\mathrm{c}=8 \lambda, \mathrm{a}+\mathrm{c}=9 \lambda$
$\Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}=12 \lambda$
Now $\mathrm{a}=4 \lambda, \mathrm{~b}=3 \lambda, \mathrm{c}=5 \lambda$
$\because c^{2}=b^{2}+a^{2}$
$\angle \mathrm{C}=90^{\circ}$
$\Delta=\frac{1}{2} \mathrm{ab} \sin \mathrm{C}=\frac{1}{2} \mathrm{ab}$
$\frac{\mathrm{R}}{\mathrm{r}}=\frac{\mathrm{c}}{2 \sin \mathrm{C}} \times \frac{\mathrm{s}}{\Delta}=\frac{\mathrm{c}}{2} \times \frac{6 \lambda}{\frac{1}{2} \mathrm{ab}}=\frac{\mathrm{c}}{\mathrm{ab}} \times 6 \lambda=\frac{5}{2}$
4. Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{R}$ be a function such that $f(x+y)=2 f(x) f(y)$ for natural numbers x and y. If $f(1)=2$, then the value of α for which

$$
\sum_{\mathrm{k}=1}^{10} \mathrm{f}(\alpha+\mathrm{k})=\frac{512}{3}\left(2^{20}-1\right)
$$

holds, is
(A) 2
(B) 3
(C) 4
(D) 6

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{R}, \mathrm{f}(\mathrm{x}+\mathrm{y})=2 \mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})$
$\mathrm{f}(1)=2$,
$\sum_{\mathrm{k}=1}^{10} \mathrm{f}(\alpha+\mathrm{k})=2 \mathrm{f}(\alpha) \sum_{\mathrm{k}=1}^{10} \mathrm{f}(\mathrm{k})$
$=2 \mathrm{f}(\alpha)(\mathrm{f}(1)+\mathrm{f}(2)+\ldots . .+\mathrm{f}(10))$
From (1)
$\mathrm{f}(2)=2 \mathrm{f}^{2}(1)=2^{3}$
$\mathrm{f}(3)=2 \mathrm{f}(2) \mathrm{f}(1)=2^{5}$
$\vdots \quad \vdots$
$\mathrm{f}(10)=2^{9} \mathrm{f}^{10}(1)=2^{19}$
$\mathrm{f}(\alpha)=2^{2 \alpha-1} ; \alpha \in \mathrm{N}$
from (2)
$\sum_{k=1}^{10} f(\alpha+k)=2\left(2^{2 \alpha-1}\right)\left(2+2^{3}+2^{5}+\ldots .+2^{19}\right)$
$\frac{512}{3}\left(2^{20}-1\right)=2^{2 \alpha}\left(2 \frac{\left(2^{20}-1\right)}{3}\right)$
Hence $\alpha=4$
5. Let A be a 3×3 real matrix such that
$\mathrm{A}\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right) ; \mathrm{A}\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ and $\mathrm{A}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$.
If $\mathrm{X}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)^{\mathrm{T}}$ and I is an identity matrix of order 3 , then the system $(A-2 I) X=\left(\begin{array}{l}4 \\ 1 \\ 1\end{array}\right)$ has
(A) no solution
(B) infinitely many solutions
(C) unique solution
(D) exactly two solutions

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. $A=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right]$

$$
\begin{aligned}
& \mathrm{A}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
\mathrm{c}_{1} \\
\mathrm{c}_{2} \\
\mathrm{c}_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \\
& \Rightarrow \quad \mathrm{c}_{1}=1, \mathrm{c}_{2}=1, \mathrm{c}_{3}=2 \\
& \mathrm{~A}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
\mathrm{c}_{1}+\mathrm{a}_{1} \\
\mathrm{c}_{2}+\mathrm{a}_{2} \\
\mathrm{c}_{3}+\mathrm{a}_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \\
& \Rightarrow \quad \mathrm{a}_{1}=-2, \mathrm{a}_{2}=-1, \mathrm{a}_{3}=-1 \\
& \mathrm{~A}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
\mathrm{a}_{1}+\mathrm{b}_{1} \\
\mathrm{a}_{2}+\mathrm{b}_{2} \\
\mathrm{a}_{3}+\mathrm{b}_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& \Rightarrow \quad \mathrm{b}_{1}=3, \mathrm{~b}_{2}=2, \mathrm{~b}_{3}=1 \\
& \Rightarrow \mathrm{~A}=\left[\begin{array}{lll}
-2 & 3 & 1 \\
-1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right]
\end{aligned}
$$

$$
\Rightarrow \quad \mathrm{A}-2 \mathrm{I}=\left[\begin{array}{lll}
-4 & 3 & 1 \\
-1 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right]
$$

$$
|\mathrm{A}-2 \mathrm{I}|=0
$$

Now, $\left[\begin{array}{ccc}-4 & 3 & 1 \\ -1 & 0 & 1 \\ -1 & 1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}4 \\ 1 \\ 1\end{array}\right]$
$-4 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x}_{3}=4$
$-\mathrm{x}_{1}+\mathrm{x}_{3}=1$
$-\mathrm{x}_{1}+\mathrm{x}_{2}=1$
(1) $-[(2)+3(3)]$
$0=0 \Rightarrow$ infinite solutions
6. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+\mathrm{x}-5$. If $g(x)$ is a function such that $f(g(x))=x$, $\forall \mathrm{x} \in \mathrm{R}$, then $\mathrm{g}^{\prime}(63)$ is equal to \qquad -.
(A) $\frac{1}{49}$
(B) $\frac{3}{49}$
(C) $\frac{43}{49}$
(D) $\frac{91}{49}$

Official Ans. by NTA (A)
Allen Ans. (A)
Sol. $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+\mathrm{x}-5$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}+1 \Rightarrow$ increasing function
\Rightarrow invertible
$\Rightarrow \quad g(x)$ is inverse of $f(x)$
$\Rightarrow \quad \mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$
$\Rightarrow \quad g^{\prime}(f(x)) f^{\prime}(x)=1$
$\mathrm{f}(\mathrm{x})=63$
$\Rightarrow \quad \mathrm{x}^{3}+\mathrm{x}-5=63$
$\Rightarrow \quad \mathrm{x}=4$
put $x=4$

$$
\begin{aligned}
& \mathrm{g}^{\prime}(\mathrm{f}(4)) \mathrm{f}^{\prime}(4)=1 \\
& \mathrm{~g}^{\prime}(63) \times 49=1 \quad\left\{\mathrm{f}^{\prime}(4)=49\right\} \\
& \mathrm{g}^{\prime}(63)=\frac{1}{49}
\end{aligned}
$$

7. Consider the following two propositions:

P1 : ~ (p $\rightarrow \sim q)$
P2: $(\mathrm{p} \wedge \sim \mathrm{q}) \wedge((\sim \mathrm{p}) \vee \mathrm{q})$
If the proposition $p \rightarrow((\sim p) \vee q)$ is evaluated as FALSE, then:
(A) P 1 is TRUE and P 2 is FALSE
(B) P1 is FALSE and P2 is TRUE
(C) Both P1 and P2 are FALSE
(D) Both P1 and P2 are TRUE

Official Ans. by NTA (C)
Allen Ans. (C)
Sol.

p	q	$\sim \mathrm{p}$	$\sim \mathrm{q}$	$\sim \mathrm{p} \vee \mathrm{q}$	$\mathrm{p} \rightarrow(\sim \mathrm{p} \vee \mathrm{q})$	$\mathrm{p} \rightarrow \sim \mathrm{q}$	$\sim(\mathrm{p} \rightarrow \sim \mathrm{q})$	$\mathrm{p} \wedge \sim \mathrm{q}$	p_{2}
T	T	F	F	T	T	F	T	F	F
T	F	F	T	F	F	T	F	T	F
F	T	T	F	T	T	T	F	F	F
F	F	T	T	T	T	T	F	F	F

$\mathrm{p} \rightarrow(\sim \mathrm{p} \vee \mathrm{q})$ is F when p is true q is false From table
P1 \& P2 both are false
8. If $\frac{1}{2 \cdot 3^{10}}+\frac{1}{2^{2} \cdot 3^{9}}+\ldots \frac{1}{2^{10} \cdot 3}=\frac{K}{2^{10} \cdot 3^{10}}$, then the remainder when K is divided by 6 is
(A) 1
(B) 2
(C) 3
(D) 5

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. $\frac{1}{2 \cdot 3^{10}}+\frac{1}{2^{2} \cdot 3^{9}}+\frac{1}{2^{3} \cdot 3^{8}}+\ldots .+\frac{1}{2^{10} \cdot 3}=\frac{K}{2^{10} \cdot 3^{10}}$
$\mathrm{K}=2^{9}+2^{8} \cdot 3+2^{7} \cdot 3^{2}+\ldots .+3^{9}$
$=\frac{2^{9}\left(\left(\frac{3}{2}\right)^{10}-1\right)}{\frac{3}{2}-1}=3^{10}-2^{10}$
Now, $3^{10}-2^{10}=\left(3^{5}-2^{5}\right)\left(3^{5}+2^{5}\right)$

$$
\begin{aligned}
& =(211)(275) \\
& =(35 \times 6+1)(45 \times 6+5) \\
& =6 \lambda+5
\end{aligned}
$$

Remainder is 5.
9. Let $\mathrm{f}(\mathrm{x})$ be a polynomial function such that $\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})+\mathrm{f}^{\prime \prime}(\mathrm{x})=\mathrm{x}^{5}+64$. Then, the value of $\lim _{x \rightarrow 1} \frac{f(x)}{x-1}$
(A) -15
(B) -60
(C) 60
(D) 15

Official Ans. by NTA (A)
Allen Ans. (A)
Sol. $\quad \underset{\mathrm{x} \rightarrow 1}{\mathrm{Lt}} \frac{\mathrm{f}(\mathrm{x})}{\mathrm{x}-1}=\mathrm{f}^{\prime}(1)($ and $\mathrm{f}(1)=0)$
$\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})+\mathrm{t}^{\prime \prime}(\mathrm{x})=\mathrm{x}^{5}+64$
$\mathrm{f}^{\prime}(\mathrm{x})+\mathrm{f}^{\prime \prime}(\mathrm{x})+\mathrm{f}^{\prime \prime \prime}(\mathrm{x})=5 \mathrm{x}^{4}$
$\mathrm{f}^{\prime \prime}(\mathrm{x})+\mathrm{f}^{\prime \prime \prime}(\mathrm{x})+\mathrm{f}^{\mathrm{iv}}(\mathrm{x})=20 \mathrm{x}^{3}$
$\mathrm{f}^{\prime \prime \prime}(\mathrm{x})+\mathrm{f}^{\mathrm{iv}}(\mathrm{x})+\mathrm{f}^{\mathrm{v}}(\mathrm{x})=60 \mathrm{x}^{2}$
$\therefore \mathrm{fv}(\mathrm{x})-\mathrm{f}^{\prime \prime}(\mathrm{x})=60 \mathrm{x}^{2}-20 \mathrm{x}^{3}$
$\Rightarrow 120-\mathrm{f}^{\prime \prime}(1)=40 \Rightarrow \mathrm{f}^{\prime \prime}(1)=80$
Also $\mathrm{f}(1)+\mathrm{f}^{\prime}(1)+\mathrm{f}^{\prime \prime}(1)=65 \Rightarrow \mathrm{f}^{\prime}(1)=-15$. Ans.
$\overline{10 .}$ Let E_{1} and E_{2} be two events such that the conditional probabilities $\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{E}_{2}\right)=\frac{1}{2}$, $P\left(E_{2} \mid E_{1}\right)=\frac{3}{4}$ and $P\left(E_{1} \cap E_{2}\right)=\frac{1}{8}$. Then:
(A) $\mathrm{P}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}\right)=\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E}_{2}\right)$
(B) $P\left(E_{1}^{\prime} \cap E_{2}^{\prime}\right)=P\left(E_{1}^{\prime}\right) \cdot P\left(E_{2}\right)$
(C) $\mathrm{P}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}^{\prime}\right)=\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E}_{2}\right)$
(D) $P\left(E_{1}{ }_{1} \cap E_{2}\right)=P\left(E_{1}\right) \cdot P\left(E_{2}\right)$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol.
(A) $\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{1}{6} \cdot \frac{1}{4}=\frac{1}{24} \neq \mathrm{P}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}\right)$
(B) $\quad P\left(E_{1}^{\prime} \cap E_{2}^{\prime}\right)=1-P\left(E_{1} \cup E_{2}\right)$

$$
\begin{aligned}
& =1-\left(\mathrm{P}\left(\mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right)-\mathrm{P}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}\right)\right) \\
& =1-\left(\frac{1}{6}+\frac{1}{4}-\frac{1}{8}\right)=\frac{17}{24}
\end{aligned}
$$

$P\left(E_{1}^{\prime}\right) P\left(E_{2}\right)=\frac{5}{6} \times \frac{1}{4}=\frac{5}{24}$
(C) $\quad \mathrm{P}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}^{\prime}\right)=\mathrm{P}\left(\mathrm{E}_{1}\right)-\mathrm{P}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}\right)=\frac{1}{6}-\frac{1}{8}=\frac{1}{24}$
(D) $\quad \mathrm{P}\left(\mathrm{E}_{1}^{\prime} \cap \mathrm{E}_{2}\right)=\mathrm{P}\left(\mathrm{E}_{2}\right)-\mathrm{P}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}\right)=\frac{1}{4}-\frac{1}{8}=\frac{1}{8}$
11. Let $\mathrm{A}=\left[\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right]$. If M and N are two matrices given by $M=\sum_{k=1}^{10} A^{2 k}$ and $N=\sum_{k=1}^{10} A^{2 k-1}$ then MN^{2} is
(A) a non-identity symmetric matrix
(B) a skew-symmetric matrix
(C) neither symmetric nor skew-symmetric matrix
(D) an identify matrix

Official Ans. by NTA (A)
Allen Ans. (A)

Sol. $A=\left[\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right]\left[\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right]=\left[\begin{array}{cc}-4 & 0 \\ 0 & -4\end{array}\right]=-4 \mathrm{I}$
$\mathrm{A}^{3}=-4 \mathrm{~A}$
$\mathrm{A}^{4}=(-4 \mathrm{I})(-4 \mathrm{I})=(-4)^{2} \mathrm{I}$
$\mathrm{A}^{5}=(-4)^{2} \mathrm{~A}, \quad \mathrm{~A}^{6}=(-4)^{3} \mathrm{I}$
$\mathrm{M}=\sum_{\mathrm{k}=1}^{10} \mathrm{~A}^{2 \mathrm{k}}=\mathrm{A}^{2}+\mathrm{A}^{4}+\ldots .+\mathrm{A}^{20}$

$$
=\left[-4+(-4)^{2}+(-4)^{3}+\ldots .+(-4)^{20}\right] \mathrm{I}
$$

$$
=-4 \lambda \mathrm{I}
$$

$\Rightarrow \mathrm{M}$ is symmetric matrix
$\mathrm{N}=\sum_{\mathrm{k}=1}^{10} \mathrm{~A}^{2 \mathrm{k}-1}=\mathrm{A}+\mathrm{A}^{3}+\ldots . .+\mathrm{A}^{19}$

$$
\begin{aligned}
& =\mathrm{A}\left[1+(-4)+(-4)^{2}+\ldots . .+(-4)^{9}\right] \\
& =\lambda \mathrm{A} \Rightarrow \text { skew symmetric }
\end{aligned}
$$

$\Rightarrow \mathrm{N}^{2}$ is symmetric matrix
$\Rightarrow \mathrm{MN}^{2}$ is non identity symmetric matrix
12. Let $\mathrm{g}:(0, \infty) \rightarrow \mathrm{R}$ be a differentiable function such that

$$
\int\left(\frac{\mathrm{x}(\cos \mathrm{x}-\sin \mathrm{x})}{\mathrm{e}^{\mathrm{x}}+1}+\frac{\mathrm{g}(\mathrm{x})\left(\mathrm{e}^{\mathrm{x}}+1-\mathrm{xe}^{\mathrm{x}}\right)}{\left(\mathrm{e}^{\mathrm{x}}+1\right)^{2}}\right) \mathrm{dx}=\frac{\mathrm{xg}(\mathrm{x})}{\mathrm{e}^{x}+1}+\mathrm{c}
$$

for all $\mathrm{x}>0$, where c is an arbitrary constant. Then.
(A) g is decreasing in $\left(0, \frac{\pi}{4}\right)$
(B) g^{\prime} is increasing in $\left(0, \frac{\pi}{4}\right)$
(C) $g+g^{\prime}$ is increasing in $\left(0, \frac{\pi}{2}\right)$
(D) $\mathrm{g}-\mathrm{g}^{\prime}$ is increasing in $\left(0, \frac{\pi}{2}\right)$

Official Ans. by NTA (D)
Allen Ans. (D)

Sol.
$\int\left(\frac{x(\cos x-\sin x)}{e^{x}+1}+\frac{g(x)\left(e^{x}+1-x e^{x}\right)}{\left(e^{x}+1\right)^{2}}\right) d x=\frac{x g(x)}{e^{x}+1}+c$
On differentiating both sides w.r.t. x , we get

$$
\left(\frac{x(\cos x-\sin x)}{e^{x}+1}+\frac{g(x)\left(e^{x}+1-x e^{x}\right.}{\left(e^{x}+1\right)^{2}}\right)
$$

$=\frac{\left(e^{x}+1\right)\left(g(x)+x g^{\prime}(x)\right)-e^{x} \cdot x \cdot g(x)}{\left(e^{x}+1\right)^{2}}$
$\left(e^{x}+1\right) x(\cos x-\sin x)+g(x)\left(e^{x}+1-x e^{x}\right)$
$=\left(e^{x}+1\right)\left(g(x)+\mathrm{xg}^{\prime}(\mathrm{x})\right)-\mathrm{e}^{\mathrm{x}} \cdot \mathrm{x} \cdot \mathrm{g}(\mathrm{x})$
$\Rightarrow \mathrm{g}^{\prime}(\mathrm{x})=\cos \mathrm{x}-\sin \mathrm{x}$
$\Rightarrow \mathrm{g}(\mathrm{x})=\sin \mathrm{x}+\cos \mathrm{x}+\mathrm{C}$
$\mathrm{g}(\mathrm{x})$ is increasing in $(0, \pi / 4)$
$\mathrm{g}^{\prime \prime}(\mathrm{x})=-\sin \mathrm{x}-\cos \mathrm{x}<0$
$\Rightarrow \mathrm{g}^{\prime}(\mathrm{x})$ is decreasing function
let $\mathrm{h}(\mathrm{x})=\mathrm{g}(\mathrm{x})+\mathrm{g}^{\prime}(\mathrm{x})=2 \cos \mathrm{x}+\mathrm{C}$
$\Rightarrow \mathrm{h}^{\prime}(\mathrm{x})=\mathrm{g}^{\prime}(\mathrm{x})+\mathrm{g}^{\prime \prime}(\mathrm{x})=-2 \sin \mathrm{x}<0$
$\Rightarrow \mathrm{h}$ is decreasing
let $\phi(\mathrm{x})=\mathrm{g}(\mathrm{x})-\mathrm{g}^{\prime}(\mathrm{x})=2 \sin \mathrm{x}+\mathrm{C}$
$\Rightarrow \phi^{\prime}(\mathrm{x})=\mathrm{g}^{\prime}(\mathrm{x})-\mathrm{g}^{\prime \prime}(\mathrm{x})=2 \cos \mathrm{x}>0$
$\Rightarrow \phi$ is increasing
Hence option D is correct.
13. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be two functions defined by $\mathrm{f}(\mathrm{x})=\log _{\mathrm{e}}\left(\mathrm{x}^{2}+1\right)-\mathrm{e}^{-\mathrm{x}}+1$ and $g(x)=\frac{1-2 e^{2 x}}{e^{x}}$. Then, for which of the following range of α, the inequality
$\mathrm{f}\left(\mathrm{g}\left(\frac{(\alpha-1)^{2}}{3}\right)\right)>\mathrm{f}\left(\mathrm{g}\left(\alpha-\frac{5}{3}\right)\right)$ holds?
(A) $(2,3)$
(B) $(-2,-1)$
(C) $(1,2)$
(D) $(-1,1)$

Official Ans. by NTA (A)
Allen Ans. (A)

Sol. $\mathrm{f}(\mathrm{x})=\log _{\mathrm{e}}\left(\mathrm{x}^{2}+1\right)-\mathrm{e}^{-\mathrm{x}}+1$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{2 \mathrm{x}}{\mathrm{x}^{2}+1}+\mathrm{e}^{-\mathrm{x}}>0 \quad \forall \mathrm{x} \in \mathrm{R}$
$\Rightarrow \mathrm{f}$ is strictly increasing
$g(x)=\frac{1-2 e^{2 x}}{e^{x}}=e^{-x}-2 e^{x}$
$\Rightarrow \mathrm{g}^{\prime}(\mathrm{x})=-\left(2 \mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)<0 \quad \forall \mathrm{x} \in \mathrm{R}$
$\Rightarrow \mathrm{g}$ is decreasing
Now $f\left(g\left(\frac{(\alpha-1)^{2}}{3}\right)\right)>f\left(g\left(\alpha-\frac{5}{3}\right)\right)$
$\Rightarrow \mathrm{g}\left(\frac{(\alpha-1)^{2}}{3}\right)>\mathrm{g}\left(\alpha-\frac{5}{3}\right)$
$\Rightarrow \frac{(\alpha-1)^{2}}{3}<\alpha-\frac{5}{3}$
$\Rightarrow \alpha^{2}-5 \alpha+6<0$
$\Rightarrow(\alpha-2)(\alpha-3)<0$
$\Rightarrow \alpha \in(2,3)$
14. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} \quad a_{i}>0, i=1,2,3$ be a vector which makes equal angles with the coordinates axes OX, OY and OZ. Also, let the projection of \vec{a} on the vector $3 \hat{i}+4 \hat{j}$ be 7 . Let \vec{b} be a vector obtained by rotating \vec{a} with 90°. If \vec{a}, \vec{b} and x-axis are coplanar, then projection of a vector $\overrightarrow{\mathrm{b}}$ on $3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}$ is equal to
(A) $\sqrt{7}$
(B) $\sqrt{2}$
(C) 2
(D) 7

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$
$\overrightarrow{\mathrm{a}}=\lambda\left(\frac{1}{\sqrt{3}} \hat{\mathrm{i}}+\frac{1}{\sqrt{3}} \hat{\mathrm{j}}+\frac{1}{\sqrt{3}} \hat{\mathrm{k}}\right)=\frac{\lambda}{\sqrt{3}}(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$
Now projection of \vec{a} on $\vec{b}=7$
$\Rightarrow \frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{b}}|}=7$
$\frac{\lambda}{\sqrt{3}} \frac{(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}) \cdot(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}})}{5}=7$
$\lambda=5 \sqrt{3}$
$\vec{a}=5(\hat{i}+\hat{j}+\hat{k})$
now $\overrightarrow{\mathrm{b}}=5 \alpha(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})+\beta(\hat{\mathrm{i}})$
$\vec{a} \cdot \vec{b}=0$
$\Rightarrow 25 \alpha(3)+5 \beta=0$
$\Rightarrow 15 \alpha+\beta=0 \Rightarrow \beta=-15 \alpha$
$\overrightarrow{\mathrm{b}}=5 \alpha(-2 \hat{i}+\hat{j}+\hat{k})$
$|\vec{b}|=5 \sqrt{3}$
$\Rightarrow \alpha= \pm \frac{1}{\sqrt{2}}$
$\overrightarrow{\mathrm{b}}= \pm \frac{5}{\sqrt{2}}(-2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$
Projection of \vec{b} on $3 \hat{i}+4 \hat{j}$ is
$\frac{\overrightarrow{\mathrm{b}} \cdot(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}})}{5}= \pm \frac{5}{\sqrt{2}}\left(\frac{-6+4}{5}\right)= \pm \sqrt{2}$
15. Let $y=y(x)$ be the solution of the differential equation $(x+1) y^{\prime}-y=e^{3 x}(x+1)^{2}$, with $y(0)=\frac{1}{3}$. Then, the point $x=-\frac{4}{3}$ for the curve $y=y(x)$ is:
(A) not a critical point
(B) a point of local minima
(C) a point of local maxima
(D) a point of inflection

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. $(x+l) d y-y d x=e^{3 x}(x+1)^{2}$
$\frac{(x+1) d y-y d x}{(x+1)^{2}}=e^{3 x}$
$d\left(\frac{y}{x+1}\right)=e^{3 x} \Rightarrow \frac{y}{x+1}=\frac{e^{3 x}}{3}+C$
$\left(0, \frac{1}{3}\right) \Rightarrow \mathrm{C}=0 \Rightarrow \mathrm{y}=\frac{(\mathrm{x}+1) \mathrm{e}^{3 \mathrm{x}}}{3}$
$\frac{d y}{d x}=\frac{1}{3}\left((x+1) 3 e^{3 x}+e^{3 x}\right)=\frac{3^{3 x}}{3}(3 x+4)$

Clearly, $\mathrm{x}=\frac{-4}{3}$ is point of local minima
16. If $\mathrm{y}=\mathrm{m}_{1} \mathrm{x}+\mathrm{c}_{1}$ and $\mathrm{y}=\mathrm{m}_{2} \mathrm{x}+\mathrm{c}_{2}, \mathrm{~m}_{1} \neq \mathrm{m}_{2}$ are two common tangents of circle $x^{2}+y^{2}=2$ and parabola $y^{2}=x$, then the value of $8\left|m_{1} m_{2}\right|$ is equal to
(A) $3+4 \sqrt{2}$
(B) $-5+6 \sqrt{2}$
(C) $-4+3 \sqrt{2}$
(D) $7+6 \sqrt{2}$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $\quad C_{1}: x^{2}+y^{2}=2$

$$
\mathrm{C}_{2}: \mathrm{y}^{2}=\mathrm{x}
$$

Let tangent to parabola be $\mathrm{y}=\mathrm{mx}+\frac{1}{4 \mathrm{~m}}$.
It is also a tangent of circle so distance from centre of circle $(0,0)$ will be $\sqrt{2}$.
$\left|\frac{\frac{1}{4 \mathrm{~m}}}{\sqrt{1+\mathrm{m}^{2}}}\right|=\sqrt{2} \Rightarrow 1=32 \mathrm{~m}^{2}+32 \mathrm{~m}^{4}$
by solving
$\mathrm{m}^{2}=\frac{3 \sqrt{2}-4}{8}, \mathrm{~m}^{2}=\frac{-3 \sqrt{2}-4}{8}$ (rejected)
$\mathrm{m}= \pm \sqrt{\frac{3 \sqrt{2}-4}{8}}$
so, $8\left|\mathrm{~m}_{1} \mathrm{~m}_{2}\right|=3 \sqrt{2}-4$
17. Let Q be the mirror image of the point $\mathrm{P}(1,0,1)$ with respect to the plane $\mathrm{S}: \mathrm{x}+\mathrm{y}+\mathrm{z}=5$. If a line L passing through $(1,-1,-1)$, parallel to the line PQ meets the plane S at R, then $Q R^{2}$ is equal to:
(A) 2
(B) 5
(C) 7
(D) 11

Official Ans. by NTA (B)
Allen Ans. (B)

Sol. $\quad y^{2} d x-x y d y=-\left(x^{2}+y^{2}\right) d y$
$y(y d x-x d y)=-\left(x^{2}+y^{2}\right) d y$
$-y(x d x-y d x)=-\left(x^{2}+y^{2}\right) d y$
$\frac{x d y-y d x}{x^{2}}=\left(1+\frac{y^{2}}{x^{2}}\right) \frac{d y}{y}$
$\Rightarrow \frac{d(y / x)}{1+\frac{y^{2}}{x^{2}}}=\frac{d y}{y}$
$\Rightarrow \tan ^{-1}\left(\frac{y}{x}\right)=\ln y+C$
$(\alpha, \sqrt{3} \alpha) \Rightarrow \frac{\pi}{3}=\ln (\sqrt{3} \alpha)+\frac{\pi}{4}$
$\therefore \quad \ln (\sqrt{3} \alpha)=\frac{\pi}{12}$
19. Let $x=2 t, y=\frac{t^{2}}{3}$ be a conic. Let S be the focus and B be the point on the axis of the conic such that $\mathrm{SA} \perp \mathrm{BA}$, where A is any point on the conic. If k is the ordinate of the centroid of $\Delta \mathrm{SAB}$, then $\lim _{\mathrm{t} \rightarrow 1} \mathrm{k}$ is equal to
(A) $\frac{17}{18}$
(B) $\frac{19}{18}$
(C) $\frac{11}{18}$
(D) $\frac{13}{18}$

Official Ans. by NTA (D)
Allen Ans. (D)

Sol.

parabola $x^{2}=12 y$
$\mathrm{SA} \perp \mathrm{SB}$

Allen Ans. (C)
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{12}$
(D) $\frac{\pi}{6}$
(A) $\frac{\pi}{3}$
equation $y^{2} d x+\left(x^{2}-x y+y^{2}\right) d y=0$, which passes through the point $(1, l)$ and intersects the line $y=\sqrt{3} x$ at the point $(\alpha, \sqrt{3} \alpha)$, then value of $\log _{e}(\sqrt{3} \alpha)$ is equal to

Official Ans. by NTA (C)
so, $\mathrm{m}_{\mathrm{AS}} \cdot \mathrm{m}_{\mathrm{AB}}=-1$
$\frac{\left(3-\frac{t^{2}}{3}\right)}{(0-2 \mathrm{t})} \cdot \frac{\left(\alpha-\frac{\mathrm{t}^{2}}{3}\right)}{(0-2 \mathrm{t})}=-1$
by solving
$3 \alpha=\frac{27 \mathrm{t}^{2}+\mathrm{t}^{4}}{\mathrm{t}^{2}-9}$
ordinate of centriod of $\Delta \mathrm{SAB}=\mathrm{K}=\frac{\alpha+\frac{\mathrm{t}^{2}}{3}+3}{3}$
$\mathrm{k}=\frac{9+3 \alpha+\mathrm{t}^{2}}{9}$
$\lim _{t \rightarrow 1} k=\lim _{t \rightarrow 1} \frac{1}{9}\left(9+t^{2}+\frac{27 t^{2}+t^{4}}{\left(t^{2}-9\right)}\right)=\frac{13}{18}$
20. Let a circle C in complex plane pass tltrough the points $\mathrm{z}_{1}=3+4 \mathrm{i}, \mathrm{z}_{2}=4+3 \mathrm{i}$ and $\mathrm{z}_{3}=5 \mathrm{i}$. If $z\left(\neq z_{1}\right)$ is a point on C such that the line through z and z_{1} is perpendicular to the line through z_{2} and z_{3}, then $\arg (z)$ is equal to :
(A) $\tan ^{-1}\left(\frac{2}{\sqrt{5}}\right)-\pi$
(B) $\tan ^{-1}\left(\frac{24}{7}\right)-\pi$
(C) $\tan ^{-1}(3)-\pi$
(D) $\tan ^{-1}\left(\frac{3}{4}\right)-\pi$

Official Ans. by NTA (B)
Allen Ans. (B)

Sol.

Slope of $\mathrm{BC}=\frac{3-5}{4-0}=-\frac{1}{2}$
Slope of $\mathrm{AP}=2$
equation of AP : y $-4=2(\mathrm{x}-3)$
$\Rightarrow \quad y=2(x-1)$
P lies on circle $\mathrm{x}^{2}+\mathrm{y}^{2}=25$
$\Rightarrow \mathrm{x}^{2}+(2(\mathrm{x}-1))^{2}=25$
$\Rightarrow \mathrm{x}=-\frac{7}{5}$ and $\mathrm{y}=-\frac{24}{5}$
$\Rightarrow \arg (\mathrm{z})=\tan ^{-1}\left(\frac{24}{7}\right)-\pi$

SECTION-B

1. Let C_{r} denote the binomial coefficient of x^{r} in the expansion of $(1+x)^{10}$. If $\alpha, \beta \in R$. $\mathrm{C}_{1}+3 \cdot 2 \mathrm{C}_{2}+5 \cdot 3 \mathrm{C}_{3}+\ldots$. upto 10 terms $=\frac{\alpha \times 2^{11}}{2^{\beta}-1}\left(\mathrm{C}_{0}+\frac{\mathrm{C}_{1}}{2}+\frac{\mathrm{C}_{2}}{3}+\ldots\right.$. upto 10 terms $)$ then the value of $\alpha+\beta$ is equal to

Official Ans. by NTA (286)
Allen Ans. (BONUS)
Sol. $(1+\mathrm{x})^{10}=\mathrm{C}_{0}+\mathrm{C}_{1} \mathrm{x}+\mathrm{C}_{2} \mathrm{x}^{2}+\ldots \ldots+\mathrm{C}_{10} \mathrm{x}^{10}$
Differentiating
$10(1+\mathrm{x})^{9}=\mathrm{C}_{1}+2 \mathrm{C}_{2} \mathrm{x}+3 \mathrm{C}_{3} \mathrm{x}^{2}+\ldots .+10 \mathrm{C}_{10} \mathrm{x}^{9}$
replace $\mathrm{x} \rightarrow \mathrm{x}^{2}$
$10\left(1+\mathrm{x}^{2}\right)^{9}=\mathrm{C}_{1}+2 \mathrm{C}_{2} \mathrm{x}^{2}+3 \mathrm{C}_{3} \mathrm{x}^{4}+\ldots .+10 \mathrm{C}_{10} \mathrm{x}^{18}$
$10 \cdot \mathrm{x}\left(1+\mathrm{x}^{2}\right)^{9}=\mathrm{C}_{1} \mathrm{x}+2 \mathrm{C}_{2} \mathrm{x}^{3}+3 \mathrm{C}_{3} \mathrm{x}^{5}+\ldots .+10 \mathrm{C}_{10} \mathrm{x}^{19}$
Differentiating
$10\left(\left(1+x^{2}\right)^{9} \cdot 1+x \cdot 9\left(1+x^{2}\right)^{8} 2 x\right)$
$=\mathrm{C}_{1} \mathrm{x}+2 \mathrm{C}_{2} \cdot 3 \mathrm{x}^{3}+3 \cdot 5 \cdot \mathrm{C}_{3} \mathrm{x}^{4}+\ldots+10 \cdot 19 \mathrm{C}_{10} \mathrm{x}^{18}$ putting $\mathrm{x}=1$
$10\left(2^{9}+18 \cdot 2^{8}\right)$

$$
=\mathrm{C}_{1}+3 \cdot 2 \cdot \mathrm{C}_{2}+5 \cdot 3 \cdot \mathrm{C}_{3}+\ldots+19 \cdot 10 \cdot \mathrm{C}_{10}
$$

$\mathrm{C}_{1}+3 \cdot 2 \cdot \mathrm{C}_{2}+\ldots \ldots . .+19 \cdot 10 \cdot \mathrm{C}_{10}$
$=10 \cdot 2^{9} \cdot 10=100 \cdot 2^{9}$
$\mathrm{C}_{0}+\frac{\mathrm{C}_{1}}{2}+\frac{\mathrm{C}_{2}}{3}+\ldots . .+\frac{\mathrm{C}_{9}}{11}+\frac{\mathrm{C}_{10}}{11}=\frac{2^{11}-1}{11}$ $10^{\text {th }}$ term $11^{\text {th }}$ term
$\mathrm{C}_{0}+\frac{\mathrm{C}_{1}}{2}+\frac{\mathrm{C}_{2}}{3}+\ldots . .+\frac{\mathrm{C}_{9}}{11}=\frac{2^{11}-2}{11}$
Now, $100 \cdot 2^{9}=\frac{\alpha \cdot 2^{11}}{2^{\beta}-1}\left(\frac{2^{11}-2}{11}\right)$
Eqn. of form $y=k\left(2^{x}-1\right)$.
It has infinite solutions even if we take $\mathrm{x}, \mathrm{y} \in \mathrm{N}$.
2. The number of 3-digit odd numbers, whose sum of digits is a multiple of 7 , is \qquad .

Official Ans. by NTA (63)
Allen Ans. (63)
Sol. x y $\mathrm{z} \leftarrow$ odd number
$\mathrm{z}=1,3,5,7,9$
$\mathrm{x}+\mathrm{y}+\mathrm{z}=7,14,21$ [sum of digit multiple of 7]
$\underset{1 \text { to9 }}{\mathrm{x}}+\underset{0 \text { to9 }}{\mathrm{y}}=6,4,2,13,11,9,7,5,20,18,16,14,12$
$\mathrm{x}+\mathrm{y}=6 \Rightarrow(1,5),(2,4),(3,3),(4,2),(5,1)$, $(6,0)$

$$
\rightarrow \text { T.N. }=6
$$

$\mathrm{x}+\mathrm{y}=4 \Rightarrow(1,3),(2,2),(3,1),(4,0)$

$$
\rightarrow \mathrm{T} \cdot \mathrm{~N}=4
$$

$\mathrm{x}+\mathrm{y}=2 \Rightarrow(1,1),(2,0)$

$$
\rightarrow \text { T.N. }=2
$$

$\mathrm{x}+\mathrm{y}=13 \Rightarrow(4,9),(5,8),(6,7),(7,6),(8,5),(9,4)$

$$
\rightarrow \mathrm{T} \cdot \mathrm{~N} .=6
$$

$\mathrm{x}+\mathrm{y}=11 \Rightarrow(2,9),(3,8),(4,7),(5,6),(6,5)$,
$(6,5),(7,4),(8,3),(9,2)$

$$
\rightarrow \text { T.N. }=8
$$

$x+y=9 \Rightarrow(1,8),(2,7),(3,8),(4,5),(5,4), \ldots .(8,1),(9,0)$

$$
\rightarrow \text { T.N. }=9
$$

$x+y=7 \Rightarrow(1,8),(2,5),(3,4), \ldots(8,1),(7,0)$ \rightarrow T.N. $=7$
$x+y=5 \Rightarrow(1,4),(2,3),(3,2),(4,1),(5,0)$ \rightarrow T.N. $=5$
$\mathrm{x}+\mathrm{y}=20 \Rightarrow$ Not possible
$\mathrm{x}+\mathrm{y}=18 \Rightarrow(9,9) \quad \rightarrow$ T.N. $=1$
$x+y=16 \Rightarrow(7,9),(8,8),(9,7)$

$$
\rightarrow \text { T.N. }=3
$$

$x+y=14 \Rightarrow(5,9),(6,8),(7,7),(8,6),(9,5)$

$$
\rightarrow \text { T.N. }=5
$$

$x+y=12 \Rightarrow(3,9),(4,8),(5,7),(6,6) \ldots(9,3)$ \rightarrow T.N. $=7$
3. Let θ be the angle between the vectors \vec{a} and \vec{b},
where $|\overrightarrow{\mathrm{a}}|=4,|\overrightarrow{\mathrm{~b}}|=3 \quad \theta \in\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$. Then
$|(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})|^{2}+4(\vec{a} \cdot \vec{b})^{2}$ is equal to \qquad
Official Ans. by NTA (576)
Allen Ans. (576)

Sol. $\quad|\vec{a}|=4,|\vec{b}|=3 \quad \theta \in\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$
$|(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})|^{2}+4(\vec{a} \cdot \vec{b})^{2}$
$|\vec{a} \times \vec{b}-\vec{b} \times \vec{a}|^{2}+4 a^{2} b^{2} \cos ^{2} \theta$
$2|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|^{2}+4 \mathrm{a}^{2} \mathrm{~b}^{2} \cos ^{2} \theta$
$4 a^{2} b^{2} \sin ^{2} \theta+4 a^{2} b^{2} \cos ^{2} \theta$
$4 a^{2} b^{2}=4 \times 16 \times 9=576$
4. Let the abscissae of the two points P and Q be the roots of $2 x^{2}-r x+p=0$ and the ordinates of P and Q be the roots of $x^{2}-s x-q=0$. If the equation of the circle described on PQ as diameter is $2\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-11 \mathrm{x}-14 \mathrm{y}-22=0$, then $2 r+s-2 q+p$ is equal to
Official Ans. by NTA (7)
Allen Ans. (7)
Sol. $\quad 2 x^{2}-r x+p=0$

$\mathrm{y}^{2}-\mathrm{sy}-\mathrm{q}=0<\begin{aligned} & \mathrm{y}_{1} \\ & \mathrm{y}_{2}\end{aligned}$
Equation of the circle with PQ as diameter is $2\left(x^{2}+y^{2}\right)-r x-2 s y+p-2 q=0$
on comparing with the given equation
$\mathrm{r}=11, \mathrm{~s}=7$
$\mathrm{p}-2 \mathrm{q}=-22$
$\therefore 2 r+s-2 q+p=22+7-22=7$
5. The number of values of x in the interval $\left(\frac{\pi}{4}, \frac{7 \pi}{4}\right)$ for which $14 \operatorname{cosec}^{2} x-2 \sin ^{2} x=21$ $-4 \cos ^{2} x$ holds, is \qquad
Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $\mathrm{x} \in\left(\frac{\pi}{4}, \frac{7 \pi}{4}\right)$
$14 \operatorname{cosec}^{2} x-2 \sin ^{2} x=21-4 \cos ^{2} x$
$=21-4\left(1-\sin ^{2} x\right)$
$=17+4 \sin ^{2} x$
$14 \operatorname{cosec}^{2} x-6 \sin ^{2} x=17$
let $\sin ^{2} \mathrm{x}=\mathrm{p}$

$$
\begin{aligned}
& \frac{14}{\mathrm{p}}-6 \mathrm{p}=17 \Rightarrow 14-6 \mathrm{p}^{2}=17 \mathrm{p} \\
& 6 \mathrm{p}^{2}+17 \mathrm{p}-14=0 \\
& \mathrm{p}=-3.5, \frac{2}{3} \Rightarrow \sin ^{2} \mathrm{x}=\frac{2}{3} \\
& \Rightarrow \sin \mathrm{x}= \pm \sqrt{\frac{2}{3}}
\end{aligned}
$$

\therefore Total 4 solutions
6. For a natural number n, let $a_{n}=19^{n}-12^{n}$. Then, the value of $\frac{31 \alpha_{9}-\alpha_{10}}{57 \alpha_{8}}$ is
Official Ans. by NTA (4)
Allen Ans. (4)
Sol. $a_{n}=19^{n}-12^{n}$

$$
\begin{aligned}
& \frac{31 \alpha_{9}-\alpha_{10}}{57 \alpha_{8}}=\frac{31\left(19^{9}-12^{9}\right)-\left(19^{10}-12^{10}\right)}{57 \alpha_{8}} \\
& =\frac{19^{9}(31-19)-12^{9}(31-12)}{57 \alpha_{8}} \\
& =\frac{19^{9} \cdot 12-12^{19} \cdot 19}{57 \alpha_{8}} \\
& =\frac{12 \cdot 19\left(19^{8}-12^{8}\right)}{57 \alpha_{8}}=4
\end{aligned}
$$

7. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function defined by
$f(x)=\left(2\left(1-\frac{x^{25}}{2}\right)\left(2+x^{25}\right)\right)^{\frac{1}{50}}$. If the function $\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{x})))+\mathrm{f}(\mathrm{f}(\mathrm{x}))$, the the greatest integer less than or equal to $g(1)$ is \qquad
Official Ans. by NTA (2)
Allen Ans. (2)
Sol. $f(x)=\left[2\left(1-\frac{x^{25}}{2}\right)\left(2+x^{25}\right)\right]^{\frac{1}{50}}$

$$
\begin{aligned}
f(x)= & {\left[\left(2-x^{25}\right)\left(2+x^{25}\right)\right]^{\frac{1}{50}} } \\
& =\left(4-x^{50}\right)^{1 / 50}
\end{aligned}
$$

$$
\mathrm{f}(\mathrm{f}(\mathrm{x}))=\left(4-\left(\left(4-\mathrm{x}^{50}\right)^{1 / 50}\right)^{50}\right)^{1 / 50}=\mathrm{x}
$$

$$
\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{x})))+\mathrm{f}(\mathrm{f}(\mathrm{x}))
$$

$$
=\mathrm{f}(\mathrm{x})+\mathrm{x}
$$

$$
\mathrm{g}(1)=\mathrm{f}(1)+1=3^{1 / 50}+1
$$

$$
[\mathrm{g}(1)]=\left[3^{1 / 50}+1\right]=2
$$

8. Let the lines
$L_{1}: \overrightarrow{\mathrm{r}}=\lambda(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}), \lambda \in \mathrm{R}$
$L_{2}: \overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}})+\mu(\hat{\mathrm{i}}+\hat{\mathrm{j}}+5 \hat{\mathrm{k}}) ; \mu \in \mathrm{R}$
intersect at the point S. If a plane $a x+b y-z$ $+\mathrm{d}=0$ passes through S and is parallel to both the lines L_{1} and L_{2}, then the value of $\mathrm{a}+\mathrm{b}+$ disequal to
Official Ans. by $\overline{\mathrm{NT}} \overline{\mathrm{A}}$ (5)
Allen Ans. (5)
Sol. Both the lines lie in the same plane

\therefore equation of the plane
$\left|\begin{array}{ccc}\mathrm{x} & \mathrm{y} & \mathrm{z} \\ 1 & 2 & 3 \\ 1 & 1 & 5\end{array}\right|=0$
$\Rightarrow 7 \mathrm{x}-2 \mathrm{y}-\mathrm{z}=0$
$\therefore \mathrm{a}+\mathrm{b}+\mathrm{d}=5$
9. Let A be a 3×3 matrix having entries from. the set $\{-1,0,1\}$. The number of all such matrices A having sum of all the entries equal to 5 , is \qquad
Official Ans. by NTA (414)
Allen Ans. (414)
Sol. Case-I:

$$
1 \rightarrow 7 \text { times }
$$

$$
\text { and }-1 \rightarrow 2 \text { times }
$$

number of possible matrix $=\frac{9!}{7!2!}=36$
Case-II: $\quad 1 \rightarrow 6$ times,

$$
-1 \rightarrow 1 \text { times }
$$

and $0 \rightarrow 2$ times
number of possible matrix $=\frac{9!}{6!2!}=252$
Case-III: $\quad 1 \rightarrow 5$ times, and $0 \rightarrow 4$ times
number of possible matrix $=\frac{9!}{5!4!}=126$
Hence total number of all such matrix A $=414$
10. The greatest integer less than or equal to the sum of first 100 terms of the sequence $\frac{1}{3}, \frac{5}{9}, \frac{19}{27}, \frac{65}{81}, \ldots \ldots$. is equal to
Official Ans. by NTA (98)
Allen Ans. (98)
Sol. $\frac{1}{3}+\frac{5}{9}+\frac{19}{27}+\frac{65}{81}+\ldots$.

$$
\begin{gathered}
\left(1-\frac{2}{3}\right)+\left(1-\frac{4}{9}\right)+\left(1-\frac{8}{27}\right)+\left(1-\frac{16}{81}\right) \ldots . .100 \text { terms } \\
100-\left[\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\ldots .\right] \\
100-\frac{\frac{2}{3}\left(1-\left(\frac{2}{3}\right)^{100}\right)}{1-\frac{2}{3}}
\end{gathered}
$$

$$
100-2\left(1-\left(\frac{2}{3}\right)^{100}\right)
$$

$$
\mathrm{S}=98+2\left(\frac{2}{3}\right)^{100}
$$

$$
\Rightarrow[\mathrm{S}]=98
$$

